当前位置:
X-MOL 学术
›
Adv. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rational Construction of Self-Standing Layered Polyhedral Co3O4/CoS2 Heterostructure Materials Boosting Superior Lithium Storage Performance
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2022-08-18 , DOI: 10.1002/admi.202201230 Shuang Jing 1 , Chunyan Zhao 1 , Xiaojie Zhang 1 , Shuo Kong 1 , Xiong Lan 1 , Zhenping Ma 1 , Hui Feng 1 , Wenbin Gong 1, 2 , Konghu Tian 1, 3, 4 , Qiulong Li 1 , Yongbao Feng 1
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2022-08-18 , DOI: 10.1002/admi.202201230 Shuang Jing 1 , Chunyan Zhao 1 , Xiaojie Zhang 1 , Shuo Kong 1 , Xiong Lan 1 , Zhenping Ma 1 , Hui Feng 1 , Wenbin Gong 1, 2 , Konghu Tian 1, 3, 4 , Qiulong Li 1 , Yongbao Feng 1
Affiliation
The increasing demands of electric vehicles and portable electronics have stimulated enhanced investigations on lithium-ion batteries (LIBs) with high capacity, increased rate capability, and long cycle stability. Transition metal oxides (TMOs) are regarded as the most promising anode materials for LIBs due to their higher theoretical capacity. However, the low conductivity and poor rate-capability of the TMOs have seriously restricted their further development in the LIBs. Herein, layered polyhedral cobalt oxide (Co3O4)/cobalt disulifde (CoS2) with heterostructure is directly grown on carbon cloth (CC) via a facile hydrothermal method and one-step sulfuration process for use as an anode. The heterostructures can effectively enhance the charge transfer capability due to the interfacial effect between Co3O4 and CoS2. Due to the decrease of the diffusion barrier on the nanocrystalline surface, the electrical conductivity of the material is significantly increased, the ionic diffusion resistance is significantly reduced, and the interface electron transfer increases. The Co3O4/CoS2//CC can deliver a high capacity (1545.8 mAh g−1 at 2 A g−1) and outstanding cycling life (493 mAh g−1 after 300 cycles). This method provides a new idea and choice for the application of heterogeneous anode materials for LIBs.
中文翻译:
自立层状多面体Co3O4/CoS2异质结构材料的合理构建提升了优越的锂存储性能
电动汽车和便携式电子产品日益增长的需求刺激了对具有高容量、更高倍率能力和长循环稳定性的锂离子电池 (LIB) 的研究。过渡金属氧化物(TMOs)因其较高的理论容量而被认为是最有前途的锂离子电池负极材料。然而,TMOs的低电导率和较差的倍率性能严重限制了它们在LIBs中的进一步发展。在此,层状多面体氧化钴(Co 3 O 4)/二硫化钴(CoS 2)通过简便的水热法和一步硫化工艺直接在碳布(CC)上生长,用作阳极。由于Co 3 O 4和CoS 2之间的界面效应,异质结构可以有效地提高电荷转移能力。由于纳米晶表面扩散势垒的减少,材料的电导率显着提高,离子扩散阻力显着降低,界面电子转移增加。Co 3 O 4 /CoS 2 //CC 可以提供高容量(1545.8 mAh g -1 at 2 A g -1) 和出色的循环寿命( 300 次循环后为493 mAh g -1 )。该方法为锂离子电池异质负极材料的应用提供了新的思路和选择。
更新日期:2022-08-18
中文翻译:
自立层状多面体Co3O4/CoS2异质结构材料的合理构建提升了优越的锂存储性能
电动汽车和便携式电子产品日益增长的需求刺激了对具有高容量、更高倍率能力和长循环稳定性的锂离子电池 (LIB) 的研究。过渡金属氧化物(TMOs)因其较高的理论容量而被认为是最有前途的锂离子电池负极材料。然而,TMOs的低电导率和较差的倍率性能严重限制了它们在LIBs中的进一步发展。在此,层状多面体氧化钴(Co 3 O 4)/二硫化钴(CoS 2)通过简便的水热法和一步硫化工艺直接在碳布(CC)上生长,用作阳极。由于Co 3 O 4和CoS 2之间的界面效应,异质结构可以有效地提高电荷转移能力。由于纳米晶表面扩散势垒的减少,材料的电导率显着提高,离子扩散阻力显着降低,界面电子转移增加。Co 3 O 4 /CoS 2 //CC 可以提供高容量(1545.8 mAh g -1 at 2 A g -1) 和出色的循环寿命( 300 次循环后为493 mAh g -1 )。该方法为锂离子电池异质负极材料的应用提供了新的思路和选择。