Nature ( IF 50.5 ) Pub Date : 2022-08-17 , DOI: 10.1038/s41586-022-04955-z
Zhidan Zeng 1 , Jianguo Wen 2 , Hongbo Lou 1 , Xin Zhang 1 , Liuxiang Yang 1 , Lijie Tan 1 , Benyuan Cheng 1, 3 , Xiaobing Zuo 4 , Wenge Yang 1 , Wendy L Mao 5, 6 , Ho-Kwang Mao 1 , Qiaoshi Zeng 1
|
High pressure induces dramatic changes and novel phenomena in condensed volatiles1,2 that are usually not preserved after recovery from pressure vessels. Here we report a process that pressurizes volatiles into nanopores of type 1 glassy carbon precursors, converts glassy carbon into nanocrystalline diamond by heating and synthesizes free-standing nanostructured diamond capsules (NDCs) capable of permanently preserving volatiles at high pressures, even after release back to ambient conditions for various vacuum-based diagnostic probes including electron microscopy. As a demonstration, we perform a comprehensive study of a high-pressure argon sample preserved in NDCs. Synchrotron X-ray diffraction and high-resolution transmission electron microscopy show nanometre-sized argon crystals at around 22.0 gigapascals embedded in nanocrystalline diamond, energy-dispersive X‑ray spectroscopy provides quantitative compositional analysis and electron energy-loss spectroscopy details the chemical bonding nature of high-pressure argon. The preserved pressure of the argon sample inside NDCs can be tuned by controlling NDC synthesis pressure. To test the general applicability of the NDC process, we show that high-pressure neon can also be trapped in NDCs and that type 2 glassy carbon can be used as the precursor container material. Further experiments on other volatiles and carbon allotropes open the possibility of bringing high-pressure explorations on a par with mainstream condensed-matter investigations and applications.
中文翻译:

纳米结构金刚石胶囊中高压挥发物的保存
高压导致冷凝挥发物发生剧烈变化和新现象1,2从压力容器中恢复后通常不会保存。在这里,我们报告了一种将挥发物加压到 1 型玻璃碳前体的纳米孔中,通过加热将玻璃碳转化为纳米晶金刚石并合成能够在高压下永久保存挥发物的独立纳米结构金刚石胶囊 (NDC) 的过程,即使在释放回包括电子显微镜在内的各种基于真空的诊断探头的环境条件。作为演示,我们对保存在 NDC 中的高压氩气样品进行了全面研究。同步加速器 X 射线衍射和高分辨率透射电子显微镜显示纳米级氩晶体嵌入纳米晶金刚石中,约 22.0 吉帕,能量色散 X 射线光谱提供定量成分分析,电子能量损失光谱详细说明了高压氩的化学键合性质。可以通过控制 NDC 合成压力来调整 NDC 内氩气样品的保存压力。为了测试 NDC 工艺的普遍适用性,我们表明高压氖也可以被困在 NDC 中,并且 2 型玻璃碳可以用作前体容器材料。对其他挥发物和碳同素异形体的进一步实验开启了将高压探索与主流凝聚态研究和应用相提并论的可能性。可以通过控制 NDC 合成压力来调整 NDC 内氩气样品的保存压力。为了测试 NDC 工艺的普遍适用性,我们表明高压氖也可以被困在 NDC 中,并且 2 型玻璃碳可以用作前体容器材料。对其他挥发物和碳同素异形体的进一步实验开启了将高压探索与主流凝聚态研究和应用相提并论的可能性。可以通过控制 NDC 合成压力来调整 NDC 内氩气样品的保存压力。为了测试 NDC 工艺的普遍适用性,我们表明高压氖也可以被困在 NDC 中,并且 2 型玻璃碳可以用作前体容器材料。对其他挥发物和碳同素异形体的进一步实验开启了将高压探索与主流凝聚态研究和应用相提并论的可能性。