当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tough Hydrogels with Isotropic and Unprecedented Crack Propagation Resistance
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-08-15 , DOI: 10.1002/adfm.202207348 Weizheng Li 1 , Sijie Zheng 1 , Xiuyang Zou 1 , Yongyuan Ren 1 , Ziyang Liu 1 , Wansu Peng 2 , Xiaoliang Wang 2 , Dong Liu 3 , Zhihao Shen 3 , Yin Hu 1 , Jiangna Guo 1 , Zhe Sun 1 , Feng Yan 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-08-15 , DOI: 10.1002/adfm.202207348 Weizheng Li 1 , Sijie Zheng 1 , Xiuyang Zou 1 , Yongyuan Ren 1 , Ziyang Liu 1 , Wansu Peng 2 , Xiaoliang Wang 2 , Dong Liu 3 , Zhihao Shen 3 , Yin Hu 1 , Jiangna Guo 1 , Zhe Sun 1 , Feng Yan 1
Affiliation
Muscles and some tough hydrogels can maintain perfect mechanical properties after millions of loading cycles owing to the anisotropic microstructures inside them. However, applications of intrinsic anisotropic microstructures in biological tissues and tough hydrogels are limited by the poor mechanical performance in the perpendicular direction relative to the alignment direction. Here, a universal strategy is proposed for developing hydrogels with unprecedented isotropic crack propagation resistance only depending on the interpenetrating entanglements of polymer chains (polyacrylamide (PAAM) or poly-(1-acrylanmido-2-methylpropanesulfonic acid) (PAMPS)) in deformable polymeric microspheres (PAMPS or PAAM). The deformable interpenetrating network in microspheres can transform the hydrogel from isotropic to anisotropic instantaneously in any load direction, and effectively alleviate the stress concentration at the crack tip, dissipate energy, and eliminate notch sensitivity. The best isotropic hydrogel displays an ultimate strain of 5300%, toughness of 18.9 MJ m–3, fracture energy of 157 kJ m–2, and fatigue threshold of 4.2 kJ m–2. Furthermore, the mechanical strength of hydrogels can be simply tuned by solvent replacement. The strategy presented here can be expanded to prepare other isotropic hydrogels with super tear-resistant and anti-fatigue properties, based on a wide variety of deformable microspheres and matrix polymers.
中文翻译:
具有各向同性和前所未有的抗裂纹扩展性的坚韧水凝胶
由于内部的各向异性微结构,肌肉和一些坚韧的水凝胶可以在数百万次加载循环后保持完美的机械性能。然而,内在各向异性微结构在生物组织和坚韧水凝胶中的应用受到相对于排列方向的垂直方向上较差的机械性能的限制。在这里,提出了一种通用策略来开发具有前所未有的各向同性裂纹扩展阻力的水凝胶,仅取决于可变形聚合物中聚合物链(聚丙烯酰胺(PAAM)或聚-(1-丙烯酰胺基-2-甲基丙磺酸)(PAMPS))的互穿缠结。微球(PAMPS 或 PAAM)。微球中的可变形互穿网络可以在任何载荷方向瞬间将水凝胶从各向同性转变为各向异性,有效缓解裂纹尖端的应力集中,耗散能量,消除缺口敏感性。最好的各向同性水凝胶的极限应变为 5300%,韧性为 18.9 MJ m–3,断裂能 157 kJ m –2,疲劳阈值 4.2 kJ m –2。此外,水凝胶的机械强度可以通过溶剂替代简单地调整。基于各种可变形微球和基质聚合物,此处介绍的策略可以扩展到制备其他具有超级抗撕裂和抗疲劳特性的各向同性水凝胶。
更新日期:2022-08-15
中文翻译:
具有各向同性和前所未有的抗裂纹扩展性的坚韧水凝胶
由于内部的各向异性微结构,肌肉和一些坚韧的水凝胶可以在数百万次加载循环后保持完美的机械性能。然而,内在各向异性微结构在生物组织和坚韧水凝胶中的应用受到相对于排列方向的垂直方向上较差的机械性能的限制。在这里,提出了一种通用策略来开发具有前所未有的各向同性裂纹扩展阻力的水凝胶,仅取决于可变形聚合物中聚合物链(聚丙烯酰胺(PAAM)或聚-(1-丙烯酰胺基-2-甲基丙磺酸)(PAMPS))的互穿缠结。微球(PAMPS 或 PAAM)。微球中的可变形互穿网络可以在任何载荷方向瞬间将水凝胶从各向同性转变为各向异性,有效缓解裂纹尖端的应力集中,耗散能量,消除缺口敏感性。最好的各向同性水凝胶的极限应变为 5300%,韧性为 18.9 MJ m–3,断裂能 157 kJ m –2,疲劳阈值 4.2 kJ m –2。此外,水凝胶的机械强度可以通过溶剂替代简单地调整。基于各种可变形微球和基质聚合物,此处介绍的策略可以扩展到制备其他具有超级抗撕裂和抗疲劳特性的各向同性水凝胶。