当前位置:
X-MOL 学术
›
ACS Appl. Polym. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermal-Responsive and 3D Printable Hydrogel Based on an Acylhydrazine-Terminated Dynamic Covalent Bond and Pluronic F127
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2022-08-16 , DOI: 10.1021/acsapm.2c00410 Huowen Chen 1 , Peng Wang 1 , Chuchu Zheng 1 , Lijuan Zhang 1
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2022-08-16 , DOI: 10.1021/acsapm.2c00410 Huowen Chen 1 , Peng Wang 1 , Chuchu Zheng 1 , Lijuan Zhang 1
Affiliation
Constructing hydrogels, which exhibit ultrastretchable and energy dissipation ability, are suitable for engineering. However, the hydrogel exhibited both ultrastretchable and flowable properties, which were usually contradictory in hydrogel design. It remains a challenge to achieve a hydrogel with a high-strength property and a 3D printable capacity. Herein, hydrogel tPEG-az-F127 was prepared by condensation of acylhydrazine-terminated three-armed PEG and benzaldehyde-terminated Pluronic F127, exhibiting high stretchability and 3D printable capability. These outstanding performances of hydrogel resulted from dynamic reversible covalent-bond of acylhydrazone bond and hydrophilicity–hydrophobicity transformation of Pluronic F127 moiety. Furthermore, the technical conditions for preparing the hydrogel, such as solid concentrations and gelation time, were optimized by the optical rheometer experiment. The principles of the switch-mode hydrogel, which can switch between high-stretchability and printability, have been comprehensively studied with dynamic light scattering (DLS), swelling, tensile and rheological tests. Furthermore, as the temperature increases from 10 to 25 °C, the hydrogel tPEG-az-F127-20 exhibits a rapid storage modulus (G′) change from 1 and 40 kPa, which is attributed to the thermal-driven increasing hydrophobicity of Pluronic F127 moiety. According to the thermosensitive switch-mode hydrogel, a pneumatical-type 3D printing was conducted to fabricate constructs of good shape and stability within human body temperature, which will be a potential candidate for 3D printable ink in the fields of tissue engineering.
中文翻译:
基于酰肼末端动态共价键和 Pluronic F127 的热响应和 3D 可打印水凝胶
构建具有超拉伸和能量耗散能力的水凝胶适用于工程。然而,水凝胶表现出超拉伸和流动性,这在水凝胶设计中通常是矛盾的。获得具有高强度特性和 3D 可打印能力的水凝胶仍然是一个挑战。在此,水凝胶 tPEG-az-F127 通过酰肼末端三臂 PEG 和苯甲醛末端 Pluronic F127 的缩合制备,具有高拉伸性和 3D 打印能力。水凝胶的这些优异性能源于酰基腙键的动态可逆共价键和 Pluronic F127 部分的亲水-疏水转变。此外,制备水凝胶的技术条件,如固体浓度和凝胶时间,通过光学流变仪实验进行了优化。通过动态光散射 (DLS)、溶胀、拉伸和流变测试,对可以在高拉伸性和可印刷性之间切换的开关模式水凝胶的原理进行了全面研究。此外,随着温度从 10°C 升高到 25°C,水凝胶 tPEG-az-F127-20 表现出快速的储能模量(G ')从 1 到 40 kPa 变化,这归因于 Pluronic F127 部分的热驱动增加的疏水性。根据热敏开关模式水凝胶,进行气动式3D打印,以制造在人体温度范围内具有良好形状和稳定性的结构,这将是组织工程领域3D打印墨水的潜在候选者。
更新日期:2022-08-16
中文翻译:
基于酰肼末端动态共价键和 Pluronic F127 的热响应和 3D 可打印水凝胶
构建具有超拉伸和能量耗散能力的水凝胶适用于工程。然而,水凝胶表现出超拉伸和流动性,这在水凝胶设计中通常是矛盾的。获得具有高强度特性和 3D 可打印能力的水凝胶仍然是一个挑战。在此,水凝胶 tPEG-az-F127 通过酰肼末端三臂 PEG 和苯甲醛末端 Pluronic F127 的缩合制备,具有高拉伸性和 3D 打印能力。水凝胶的这些优异性能源于酰基腙键的动态可逆共价键和 Pluronic F127 部分的亲水-疏水转变。此外,制备水凝胶的技术条件,如固体浓度和凝胶时间,通过光学流变仪实验进行了优化。通过动态光散射 (DLS)、溶胀、拉伸和流变测试,对可以在高拉伸性和可印刷性之间切换的开关模式水凝胶的原理进行了全面研究。此外,随着温度从 10°C 升高到 25°C,水凝胶 tPEG-az-F127-20 表现出快速的储能模量(G ')从 1 到 40 kPa 变化,这归因于 Pluronic F127 部分的热驱动增加的疏水性。根据热敏开关模式水凝胶,进行气动式3D打印,以制造在人体温度范围内具有良好形状和稳定性的结构,这将是组织工程领域3D打印墨水的潜在候选者。