当前位置: X-MOL 学术Colloids Surf. A Physicochem. Eng. Aspects › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication of Bi4O5Br2-decorated rod-like MOF-derived MoS2 hierarchical heterostructures for boosting photocatalytic CO2 reduction
Colloids and Surfaces A: Physicochemical and Engineering Aspects ( IF 4.9 ) Pub Date : 2022-08-13 , DOI: 10.1016/j.colsurfa.2022.129940
Jinmiao Sun , Xiaoli Li , Jiamin Li , Manman Mu , Xiaohong Yin

Bi-based semiconductors have been regarded to be an ideal platform in photocatalytic CO2 reduction to fuels. However, the insufficient charge transfer efficiency greatly restricts their practical application. Herein, we fabricated 1D/2D hierarchical heterostructures by the hybridization of Bi4O5Br2 and rod-like MOF-derived MoS2 anchored in nitrogen-doped porous carbon (NPC-MoS2) using Mo-MOF as a precursor followed by sulfidation and typical solvothermal process. Compared to pristine Bi4O5Br2 nanosheet and NPC-MoS2 nanorod, the 5 wt% NPC-MoS2@Bi4O5Br2 p-n heterojunction exhibits distinctly enhanced photocatalytic activity under light illumination due to the increased light absorption capability and more effective charge transfer efficiency. X-ray photoelectron spectroscopy and photoelectrochemical analysis imply that a built-in electric field on interfaces is created to form p-n heterojunctions which drive the photoinduced electrons transferred from NPC-MoS2 to Bi4O5Br2. Finally, the type-II charge transfer mechanism is proposed which promotes separation of the charges and provides suitable conduction band to reduce CO2 much efficiently. In a word, this work provides a new insight into the establishment of hierarchical p-n heterostructures for photocatalysis.



中文翻译:

制备 Bi4O5Br2 装饰的棒状 MOF 衍生的 MoS2 分级异质结构用于促进光催化 CO2 还原

Bi基半导体被认为是光催化CO 2还原为燃料的理想平台。然而,电荷转移效率不足极大地限制了它们的实际应用。在此,我们使用 Mo-MOF 作为前驱体,通过Bi 4 O 5 Br 2和棒状 MOF 衍生的 MoS 2的杂化制造了 1D/2D 分级异质结构,该MoS 2锚定在氮掺杂多孔碳 (NPC-MoS 2 ) 中。硫化和典型的溶剂热过程。与原始 Bi 4 O 5 Br 2纳米片和 NPC-MoS 2纳米棒相比,5 wt% NPC-MoS 2 @Bi由于增加的光吸收能力和更有效的电荷转移效率, 4 O 5 Br 2 p-n异质结在光照下表现出明显增强的光催化活性。X 射线光电子能谱和光电化学分析表明,在界面上产生了内置电场以形成pn异质结,从而驱动光生电子从 NPC-MoS 2转移到 Bi 4 O 5 Br 2。最后,提出了促进电荷分离并提供合适的导带以减少CO 2的II型电荷转移机制。效率很高。总之,这项工作为建立用于光催化的分级pn异质结构提供了新的见解。

更新日期:2022-08-13
down
wechat
bug