Leukemia ( IF 12.8 ) Pub Date : 2022-08-12 , DOI: 10.1038/s41375-022-01676-0
Penglei Jiang 1, 2, 3 , Zhaoru Zhang 1, 2, 3 , Yongxian Hu 2, 3, 4 , Zuyu Liang 2, 3, 4 , Yingli Han 1, 2, 3 , Xia Li 2, 3, 4 , Xin Zeng 1, 2, 3 , Hao Zhang 5 , Meng Zhu 1, 2, 3 , Jian Dong 1, 2, 3 , He Huang 2, 3, 4 , Pengxu Qian 1, 2, 3
|
Chimeric antigen receptor T cells (CAR-T) therapy has achieved remarkable therapeutic success in treating a variety of hematopoietic malignancies. However, the high relapse rate and poor in vivo persistence, partially caused by CAR-T cell exhaustion, are still important barriers against CAR-T therapy. It remains largely elusive on the mechanisms of CAR-T exhaustion and how to attenuate exhaustion to achieve better therapeutic efficacy. In this study, we initially observed that CAR-T cells showed rapid differentiation and increased exhaustion after co-culture with tumor cells in vitro, and then performed single-cell ATAC-seq to depict the comprehensive and dynamic landscape of chromatin accessibility of CAR-T cells during tumor cell stimulation. Analyses of differential chromatin accessible regions and motif accessibility revealed that TFs were distinct in each cell type and reconstituted a coordinated regulatory network to drive CAR-T exhaustion. Furthermore, we performed scATAC-seq in patient-derived CAR-T cells and identified BATF and IRF4 as pivotal regulators in CAR-T cell exhaustion. Finally, knockdown of BATF or IRF4 enhanced the killing ability, inhibited exhaustion, and prolonged the persistence of CAR-T cells in vivo. Together, our study unraveled the epigenetic regulatory mechanisms of CAR-T exhaustion and provided new insights into CAR-T engineering to achieve better clinical treatment benefits.
中文翻译:

单细胞 ATAC-seq 绘制了 CAR-T 细胞功能障碍的全面动态染色质可及性图谱
嵌合抗原受体 T 细胞 (CAR-T) 疗法在治疗多种造血系统恶性肿瘤方面取得了显着的治疗成功。然而,部分由 CAR-T 细胞耗竭引起的高复发率和体内持久性差仍然是 CAR-T 治疗的重要障碍。CAR-T 衰竭的机制以及如何减轻衰竭以获得更好的治疗效果,在很大程度上仍然难以捉摸。在这项研究中,我们初步观察到 CAR-T 细胞在体外与肿瘤细胞共培养后表现出快速分化和衰竭增加,然后进行单细胞 ATAC-seq 来描绘 CAR-T 染色质可及性的综合动态景观。肿瘤细胞刺激期间的 T 细胞。对差异染色质可及区域和基序可及性的分析表明,转录因子在每种细胞类型中都是不同的,并重建了一个协调的调控网络来驱动 CAR-T 耗竭。此外,我们对患者来源的 CAR-T 细胞进行了 scATAC-seq,并将 BATF 和 IRF4 鉴定为 CAR-T 细胞耗竭的关键调节因子。最后,敲低 BATF 或 IRF4 可以增强杀伤能力,抑制衰竭,延长 CAR-T 细胞在体内的持久性。总之,我们的研究揭示了 CAR-T 耗竭的表观遗传调控机制,并为 CAR-T 工程提供了新的见解,以实现更好的临床治疗效果。我们对患者来源的 CAR-T 细胞进行了 scATAC-seq,并将 BATF 和 IRF4 鉴定为 CAR-T 细胞衰竭的关键调节因子。最后,敲低 BATF 或 IRF4 可以增强杀伤能力,抑制衰竭,延长 CAR-T 细胞在体内的持久性。总之,我们的研究揭示了 CAR-T 耗竭的表观遗传调控机制,并为 CAR-T 工程提供了新的见解,以实现更好的临床治疗效果。我们对患者来源的 CAR-T 细胞进行了 scATAC-seq,并将 BATF 和 IRF4 鉴定为 CAR-T 细胞衰竭的关键调节因子。最后,敲低 BATF 或 IRF4 可以增强杀伤能力,抑制衰竭,延长 CAR-T 细胞在体内的持久性。总之,我们的研究揭示了 CAR-T 耗竭的表观遗传调控机制,并为 CAR-T 工程提供了新的见解,以实现更好的临床治疗效果。