当前位置:
X-MOL 学术
›
J. Am. Math. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
On a conjecture of Braverman-Kazhdan
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-12-02 , DOI: 10.1090/jams/992 Tsao-Hsien Chen
Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2021-12-02 , DOI: 10.1090/jams/992 Tsao-Hsien Chen
Abstract:In this article we prove a conjecture of Braverman-Kazhdan in [Geom. Funct. Anal. Special Volume (2000), pp. 237–278] on acyclicity of $\rho$-Bessel sheaves on reductive groups. We do so by proving a vanishing conjecture proposed in our previous work [A vanishing conjecture: the GLn case, arXiv:1902.11190]. As a corollary, we obtain a geometric construction of the non-linear Fourier kernel for a finite reductive group as conjectured by Braverman and Kazhdan. The proof uses the theory of Mellin transforms, Drinfeld center of Harish-Chandra bimodules, and a construction of a class of character sheaves in mixed-characteristic.
中文翻译:
关于 Braverman-Kazhdan 的猜想
摘要:在本文中,我们证明了 [Geom. 功能。肛门。Special Volume (2000), pp. 237–278] 关于还原群上 $\rho$-Bessel 滑轮的非循环性。我们通过证明我们之前工作中提出的消失猜想来做到这一点[消失猜想:GLn 案例,arXiv:1902.11190]。作为推论,我们得到了 Braverman 和 Kazhdan 猜想的有限约简群的非线性傅里叶核的几何构造。证明使用了 Mellin 变换理论、Harish-Chandra 双模的 Drinfeld 中心和混合特征中的一类特征层的构造。
更新日期:2021-12-02
中文翻译:
关于 Braverman-Kazhdan 的猜想
摘要:在本文中,我们证明了 [Geom. 功能。肛门。Special Volume (2000), pp. 237–278] 关于还原群上 $\rho$-Bessel 滑轮的非循环性。我们通过证明我们之前工作中提出的消失猜想来做到这一点[消失猜想:GLn 案例,arXiv:1902.11190]。作为推论,我们得到了 Braverman 和 Kazhdan 猜想的有限约简群的非线性傅里叶核的几何构造。证明使用了 Mellin 变换理论、Harish-Chandra 双模的 Drinfeld 中心和混合特征中的一类特征层的构造。