Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2022-08-11 , DOI: 10.1016/j.psep.2022.08.015 Jing Dang , Ni Zhang , Meng Qi , Mingqi Bai , Hui Xu , Zhongxu He , Lan Li , Chi-Min Shu , Yi Liu
Organic peroxides (OPs) readily demonstrate oxidising and self-reactive characteristics that can easily cause fire and explosion. Information regarding the thermal stability and other properties of OPs should be provided to industries that use these materials to avoid unexpected thermal decomposition in the workplace. The target substance in this study, 1,1-di-tert-butyl peroxy-3,3,5-trimethyl cyclohexane (TMCH), is commonly used in the chemical industry, and scholars have considered its applications in the aerospace sector in the last two decades. Because of different conditions in the chemical and aerospace industry, parameters measured under the previous conditions leave unforeseen thermal risks. The thermal behaviour and runaway pathway of TMCH, especially under adiabatic conditions, were investigated using experimental and theoretical computation methodologies. Differential scanning calorimetry, thermogravimetric analyser, and adiabatic accelerating calorimeter were applied for the thermokinetic constants of TMCH. Experimental results indicated that TMCH could release heat and gas when decomposed, with a high potential explosion hazard. Molecular simulation calculations can compensate for the measurement restrictions of instruments. The peroxy bond dissociation energy of TMCH was amended by basis set superposition error correction calculations. The analysis determined the thermal runaway reaction pathway of TMCH and evaluated the formation mechanism of the transition state defined by the intrinsic reaction coordinate. The main reason for TMCH mass loss caused by heating was the release of CO2 and ethane gas. This paper confirmed experimental results by molecular simulation with thermodynamic constants. The study results can be used as a reference for the loss prevention and control of TMCH in more potential engineering applications.
中文翻译:
1,1-二叔丁基过氧-3,3,5-三甲基环己烷的热稳定性和热分解机理的绝热量热仪和理论方法研究
有机过氧化物 (OP) 很容易表现出容易引起火灾和爆炸的氧化和自反应特性。应向使用这些材料的行业提供有关 OP 的热稳定性和其他特性的信息,以避免在工作场所发生意外的热分解。本研究的目标物质 1,1-二叔丁基过氧 3,3,5-三甲基环己烷 (TMCH) 是化学工业中常用的物质,学者们考虑了其在航空航天领域的应用。过去二十年。由于化学和航空航天工业的条件不同,在以前的条件下测量的参数会留下无法预料的热风险。热行为使用实验和理论计算方法研究了 TMCH 的失控途径,特别是在绝热条件下。采用差示扫描量热法、热重分析仪和绝热加速量热仪测定TMCH的热动力学常数。实验结果表明,TMCH在分解时会放出热量和气体,具有很高的爆炸危险。分子模拟计算可以弥补仪器的测量限制。通过基组叠加误差校正计算修正了TMCH的过氧键解离能。分析确定了TMCH 的热失控反应途径,并评估了由本征反应坐标定义的过渡态的形成机制。加热引起的TMCH质量损失的主要原因是CO 2和乙烷气体的释放。本文通过热力学常数的分子模拟证实了实验结果。研究结果可为TMCH在更多潜在工程应用中的防损和控制提供参考。