当前位置: X-MOL 学术Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrogen production using piston reactor technology: Process design and integration for CO2 emission reduction
Energy ( IF 9.0 ) Pub Date : 2022-08-10 , DOI: 10.1016/j.energy.2022.124999
Mary Katebah , Aya Abousrafa , Mamoun Al-Rawashdeh , Patrick Linke

The piston reactor is emerging as a simple, inexpensive, and compact technology to carry out chemical reactions. Potential piston reactor advantages include high temperature and pressure conditions at short residence times, large throughput, and fast quenching steps. Published research related to hydrogen production using piston reactors has almost exclusively focused on the POX route for hydrogen production and on exploring reactor performance as opposed to overall process performance in terms of specific production costs and emissions. This study provides a process-level understanding of the techno-economics of hydrogen production using piston reactor technology via the three prominent routes for grey and blue hydrogen production: methane partial oxidation (POX), auto-thermal reforming (ATR), and steam methane reforming (SMR). A piston reactor model is initially used to screen the reactor performance in terms of methane conversion and hydrogen production, revealing underperformance for the SMR route. Next, stand-alone hydrogen production processes embedding the piston reactors for the remaining POX and ATR routes are synthesized and specific production costs and CO2 emissions for ‘grey’ hydrogen production determined. Next, the piston reactor processes are integrated with CO2 capture and compression steps for subsequent sequestration and the impact of such CO2 emission mitigation on ‘blue’ hydrogen production costs is evaluated. The obtained results show that the piston-reactor ATR process significantly outperforms the piston-reactor POX process for both grey and blue hydrogen production. For a 100 TPD plant capacity and a natural gas price of $3.3/GJ, blue hydrogen production costs for the piston reactor-based ATR processes are observed to be 1.6/kg H2, which is competitive with reported blue hydrogen production costs using the conventional SMR route. A sensitivity study reveals that the plant capacity has significant impact while piston reactor useful life had low impact hydrogen production costs.



中文翻译:

使用活塞反应器技术生产氢气:二氧化碳减排的工艺设计和集成

活塞反应器正在成为一种简单、廉价和紧凑的技术来进行化学反应。活塞式反应器的潜在优势包括停留时间短、生产量大和快速淬火步骤的高温和高压条件。与使用活塞式反应器生产氢气相关的已发表研究几乎完全集中在 POX 制氢路线和探索反应器性能,而不是在特定生产成本和排放方面的整体工艺性能。本研究通过三种主要的灰色和蓝色制氢路线:甲烷部分氧化 (POX)、自热重整 (ATR) 和蒸汽甲烷,从工艺层面了解使用活塞反应器技术生产氢气的技术经济性重整(SMR)。活塞反应器模型最初用于筛选反应器在甲烷转化和氢气生产方面的性能,揭示了 SMR 路线的性能不佳。接下来,为其余 POX 和 ATR 路线合成嵌入活塞反应器的独立制氢工艺,并合成具体的生产成本和 CO2确定了“灰色”氢气生产的排放量。接下来,活塞反应器工艺与 CO 2捕获和压缩步骤相结合,用于随后的封存,并评估这种 CO 2排放缓解对“蓝色”氢气生产成本的影响。获得的结果表明,活塞反应器 ATR 工艺在灰色和蓝色氢气生产方面都显着优于活塞反应器 POX 工艺。对于 100 TPD 的工厂产能和 3.3 美元/GJ 的天然气价格,基于活塞反应器的 ATR 工艺的蓝氢生产成本据观察为 1.6/kg H 2,这与使用传统 SMR 路线报告的蓝色氢气生产成本具有竞争力。一项敏感性研究表明,工厂产能具有显着影响,而活塞反应器使用寿命对制氢成本的影响较小。

更新日期:2022-08-14
down
wechat
bug