当前位置:
X-MOL 学术
›
ACS Photonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transition from Lorentz to Fano Spectral Line Shapes in Nonrelativistic Quantum Electrodynamics
ACS Photonics ( IF 6.5 ) Pub Date : 2022-08-11 , DOI: 10.1021/acsphotonics.2c00256 Davis M. Welakuh 1 , Prineha Narang 1
ACS Photonics ( IF 6.5 ) Pub Date : 2022-08-11 , DOI: 10.1021/acsphotonics.2c00256 Davis M. Welakuh 1 , Prineha Narang 1
Affiliation
Spectroscopic signatures associated with symmetric Lorentzian and asymmetric Fano line shapes are ubiquitous. Distinct features of Fano resonances in contrast with conventional symmetric resonances have found several applications in photonics such as optical switching, sensing, lasing, and nonlinear and slow-light devices. It is therefore important to effectively generate and control these resonances. In this work, we show through ab initio simulations of coupled light–matter systems that Fano interference phenomena can be realized in a multimode photonic environment by strong coupling to the electromagnetic continuum. Specifically, we show that by effectively enhancing the light–matter coupling strength to the photon continuum in an experimentally feasible way, we can achieve a transition from Lorentzian to Fano lines shapes for both electronic and polaritonic excitations. An important outcome of switching between these spectral signatures is the possibility to control the Purcell enhancement of spontaneous emission alongside electromagnetically induced transparency, which is a special case of Fano resonances. Switching from Fano back to a Lorentzian profile can be achieved by physically reducing the coupling strength to the continuum of modes. Our results hold potential for realizing tunable Fano resonances of molecules and materials interacting with the electromagnetic continuum within multimode photonic environments.
中文翻译:
非相对论量子电动力学中从洛伦兹到法诺谱线形状的转变
与对称洛伦兹和不对称法诺线形状相关的光谱特征无处不在。与传统对称共振相比,Fano 共振的不同特征已在光子学中找到了多种应用,例如光学开关、传感、激光以及非线性和慢光器件。因此,有效地产生和控制这些共振很重要。在这项工作中,我们通过对光-物质耦合系统的从头算模拟表明,通过与电磁连续体的强耦合,可以在多模光子环境中实现 Fano 干涉现象。具体来说,我们表明,通过以实验可行的方式有效地增强光子连续体的光物质耦合强度,对于电子和极化子激发,我们可以实现从洛伦兹线到法诺线形状的转变。在这些光谱特征之间切换的一个重要结果是可以控制自发发射的 Purcell 增强以及电磁感应透明度,这是 Fano 共振的一个特例。从 Fano 切换回 Lorentzian 轮廓可以通过将耦合强度物理降低到模式的连续体来实现。我们的结果具有实现在多模光子环境中与电磁连续体相互作用的分子和材料的可调谐 Fano 共振的潜力。在这些光谱特征之间切换的一个重要结果是可以控制自发发射的 Purcell 增强以及电磁感应透明度,这是 Fano 共振的一个特例。从 Fano 切换回 Lorentzian 轮廓可以通过将耦合强度物理降低到模式的连续体来实现。我们的结果具有实现在多模光子环境中与电磁连续体相互作用的分子和材料的可调谐 Fano 共振的潜力。在这些光谱特征之间切换的一个重要结果是可以控制自发发射的 Purcell 增强以及电磁感应透明度,这是 Fano 共振的一个特例。从 Fano 切换回 Lorentzian 轮廓可以通过将耦合强度物理降低到模式的连续体来实现。我们的结果具有实现在多模光子环境中与电磁连续体相互作用的分子和材料的可调谐 Fano 共振的潜力。
更新日期:2022-08-11
中文翻译:
非相对论量子电动力学中从洛伦兹到法诺谱线形状的转变
与对称洛伦兹和不对称法诺线形状相关的光谱特征无处不在。与传统对称共振相比,Fano 共振的不同特征已在光子学中找到了多种应用,例如光学开关、传感、激光以及非线性和慢光器件。因此,有效地产生和控制这些共振很重要。在这项工作中,我们通过对光-物质耦合系统的从头算模拟表明,通过与电磁连续体的强耦合,可以在多模光子环境中实现 Fano 干涉现象。具体来说,我们表明,通过以实验可行的方式有效地增强光子连续体的光物质耦合强度,对于电子和极化子激发,我们可以实现从洛伦兹线到法诺线形状的转变。在这些光谱特征之间切换的一个重要结果是可以控制自发发射的 Purcell 增强以及电磁感应透明度,这是 Fano 共振的一个特例。从 Fano 切换回 Lorentzian 轮廓可以通过将耦合强度物理降低到模式的连续体来实现。我们的结果具有实现在多模光子环境中与电磁连续体相互作用的分子和材料的可调谐 Fano 共振的潜力。在这些光谱特征之间切换的一个重要结果是可以控制自发发射的 Purcell 增强以及电磁感应透明度,这是 Fano 共振的一个特例。从 Fano 切换回 Lorentzian 轮廓可以通过将耦合强度物理降低到模式的连续体来实现。我们的结果具有实现在多模光子环境中与电磁连续体相互作用的分子和材料的可调谐 Fano 共振的潜力。在这些光谱特征之间切换的一个重要结果是可以控制自发发射的 Purcell 增强以及电磁感应透明度,这是 Fano 共振的一个特例。从 Fano 切换回 Lorentzian 轮廓可以通过将耦合强度物理降低到模式的连续体来实现。我们的结果具有实现在多模光子环境中与电磁连续体相互作用的分子和材料的可调谐 Fano 共振的潜力。