当前位置:
X-MOL 学术
›
J. Econ. Geogr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A new method for identifying and delineating spatial agglomerations with application to venture-backed startups
Journal of Economic Geography ( IF 3.1 ) Pub Date : 2022-08-09 , DOI: 10.1093/jeg/lbac024 Edward J Egan 1 , James A Brander 2
Journal of Economic Geography ( IF 3.1 ) Pub Date : 2022-08-09 , DOI: 10.1093/jeg/lbac024 Edward J Egan 1 , James A Brander 2
Affiliation
This article advances a new approach using hierarchical cluster analysis (HCA) for identifying and delineating spatial agglomerations and applies it to venture-backed startups. HCA identifies nested clusters at varying aggregation levels. We describe two methods for selecting a particular aggregation level and the associated agglomerations. The ‘elbow method’ relies entirely on geographic information. Our preferred method, the ‘regression method’, uses geographic information and venture capital investment data and identifies finer agglomerations, often the size of a small neighborhood. We use heat maps to illustrate how agglomerations evolve and we describe how our methods can help assess agglomeration support policies.
中文翻译:
一种用于识别和描绘空间聚集的新方法,适用于风险投资支持的初创公司
本文提出了一种使用层次聚类分析 (HCA) 识别和描绘空间聚集的新方法,并将其应用于风险投资支持的初创公司。HCA 可识别不同聚合级别的嵌套集群。我们描述了两种选择特定聚合级别和相关聚合的方法。“肘法”完全依赖于地理信息。我们首选的方法是“回归法”,它使用地理信息和风险资本投资数据,并识别更精细的聚集区,通常是一个小社区的大小。我们使用热图来说明聚集如何演变,并描述我们的方法如何帮助评估聚集支持政策。
更新日期:2022-08-09
中文翻译:
一种用于识别和描绘空间聚集的新方法,适用于风险投资支持的初创公司
本文提出了一种使用层次聚类分析 (HCA) 识别和描绘空间聚集的新方法,并将其应用于风险投资支持的初创公司。HCA 可识别不同聚合级别的嵌套集群。我们描述了两种选择特定聚合级别和相关聚合的方法。“肘法”完全依赖于地理信息。我们首选的方法是“回归法”,它使用地理信息和风险资本投资数据,并识别更精细的聚集区,通常是一个小社区的大小。我们使用热图来说明聚集如何演变,并描述我们的方法如何帮助评估聚集支持政策。