当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compressible, superelastic and fatigue resistant carbon nanofiber aerogels derived from bacterial cellulose for multifunctional piezoresistive sensors
Carbon ( IF 10.5 ) Pub Date : 2022-08-06 , DOI: 10.1016/j.carbon.2022.08.006
Bin Wang , Xiufa Yin , Rui Cheng , Jinpeng Li , Guangdong Ying , Kefu Chen

Carbon aerogels have been widely exploited for wearable piezoresistive sensing thanks to their fascinating properties such as ultralow density, high electrical conductivity, superelasticity, and fatigue resistance, but to date, maintain high mechanical performances and high sensitivity in a wide pressure range still remains a huge challenge for carbon aerogels based piezoresistive sensors. Herein, we propose a simple but efficient morphology-maintained carbonization strategy by tailoring the pyrolysis chemistry of BC to fabricate superelastic and fatigue-resistant carbon nanofiber aerogels. Bacterial cellulose hydrogels are fabricated as nanofiber aerogels with a 3D-interconnected honeycomb-like structure by unidirectional freeze-drying technology, while the rational introduction of (NH4)2SO4 significantly inhibits the shrinkage and deformation of bacterial cellulose nanofiber aerogels during the carbonization process, enabling the retention of the 3D-interconnected honeycomb-like structure after carbonization. The as-prepared carbon nanofiber aerogels (CNFAs) exhibit exceptional mechanical performances of high compressibility (up to 99% strain), superelasticity (∼97.4%, 500 cycles at 90% compression), and fatigue resistance (up to 10 000 cycles). Moreover, the CNFAs derived sensor possesses a high sensitivity (5.66 kPa−1) at a wide pressure range (0–28 kPa), and a fast response time (∼100 ms), enabling the CNFAs-based sensor to monitor signals of the human body, spatial pressure, and voice recognition. These fascinating attributes make the CNFAs highly attractive for flexible wearable devices.



中文翻译:

用于多功能压阻传感器的细菌纤维素衍生的可压缩、超弹性和抗疲劳碳纳米纤维气凝胶

碳气凝胶因其超低密度、高导电性、超弹性和抗疲劳性等迷人特性而被广泛用于可穿戴压阻传感,但迄今为止,在宽压力范围内保持高机械性能和高灵敏度仍然是一个巨大的挑战。基于碳气凝胶的压阻传感器面临的挑战。在此,我们提出了一种简单但有效的形态保持碳化策略,通过调整 BC 的热解化学来制造超弹性和抗疲劳的碳纳米纤维气凝胶。细菌纤维素水凝胶通过单向冷冻干燥技术制备成具有3D互连蜂窝状结构的纳米纤维气凝胶,同时合理引入(NH 4 ) 2SO 4显着抑制了细菌纤维素纳米纤维气凝胶在碳化过程中的收缩和变形,使碳化后的3D互连蜂窝状结构得以保留。所制备的碳纳米纤维气凝胶(CNFAs)表现出优异的机械性能,包括高压缩性(高达 99% 的应变)、超弹性(~97.4%,90% 压缩下 500 次循环)和抗疲劳性(高达 10000 次循环)。此外,CNFAs 衍生传感器具有高灵敏度(5.66 kPa -1)在宽压力范围(0-28 kPa)和快速响应时间(~100 ms)下,使基于CNFAs的传感器能​​够监测人体信号、空间压力和语音识别。这些引人入胜的属性使 CNFA 对柔性可穿戴设备极具吸引力。

更新日期:2022-08-06
down
wechat
bug