使用Positronics 研究了在聚乙烯吡咯烷酮 (PVP) 水溶液中进行湿纳米研磨的玻璃状砷化物 g-As x Se 100-x (5 ≤ x ≤ 65) 中的纳米结构化效应,Positronics是一种先进的表征工具,可追踪固体中的自由体积实体基于正电子湮没寿命(PAL)光谱。由于 XRD 分析根据改进的微晶方法识别了 PVP 纳米级 g-As-Se 中中等范围有序的微观结构特性,因此对结果进行了直接的解释。纳米研磨在具有网络结构的低于化学计量的 g-As x Se 100-x (x < 40) 中被证明是无效的,而导致由于分子到网络的转变,过度化学计量玻璃 (x > 40) 的再结晶。在无约束的三分量拟合下重建的 PAL 光谱的组成变化在低于化学计量的 g-As x Se 100-x /PVP 纳米复合材料 ( x < 40) 中显示,在位置不变的 PAL 光谱峰中显示出抑制趋势,并辅以广泛扩展由累积的长寿命湮灭事件组成的尾巴。这些变化仅在过度化学计量的纳米复合材料中被抑制(x > 40)。两态简单俘获模型的初步分析证明,正电子俘获发生在 g-As-Se 的本征空洞中,扩大到多原子空位的特征体积,而束缚的正电子(正电子,Ps)态在 PVP 介质中衰减。× 3- × 2-CDA(耦合分解算法)的形式描述了 Ps 相关状态到正电子陷阱的转换,用于识别纳米复合材料中相对于化学计量 g-As 2 Se 3 /PVP 的体积变化。低于化学计量的纳米复合材料 (x < 40) 的控制过程被认为是统一的正电子到 Ps 俘获转换,消失的正电子俘获是 PVP 纳米空位特征到 g-As-Se。然而,在过度化学计量的纳米复合材料(x > 40)中没有单独的捕获修饰过程来控制这种效应,具有主要不同捕获位点的分子网络结构。
"点击查看英文标题和摘要"
Polyvinylpyrrolidone-nanosized glassy arsenoselenides characterized by complementary Positronics and XRD analysis
Nanostructurization effects, in glassy arsenoselenides g-AsxSe100-x (5 ≤ x ≤ 65) subjected to wet nanomilling in polyvinylpyrrolidone (PVP) water solution, are studied employing the Positronics, an advanced characterization tool tracing free-volumetric entities in solids based on the positron annihilation lifetime (PAL) spectroscopy. Straightforward interpretation of the results is developed due to the XRD analysis recognizing microstructural peculiarities of medium-range ordering in PVP-nanosized g-As-Se in terms of modified microcrystalline approach. Nanomilling is shown to be ineffective in under-stoichiometric g-AsxSe100-x (x < 40) possessing network structures, while causes reamorphization in over-stoichiometric glass (x > 40) due to molecular-to-network transition. Compositional changes in the PAL spectra reconstructed under unconstrained three-component fitting are revealed in under-stoichiometric g-AsxSe100-x/PVP nanocomposites (x < 40), showing depressing trend in positionally-invariant PAL spectrum peaks supplemented by widely expanded tails composed of accumulated long-lived annihilation events. These changes are merely suppressed in over-stoichiometric nanocomposites (x > 40). Preliminary analysis within two-state simple trapping model, testifies that positron trapping occurs in intrinsic voids of g-As-Se enlarged to the character volumes of multiatomic vacancies, while bound positron–electron (positronium, Ps) states decay in PVP medium. Formalism of × 3- × 2-CDA (coupling decomposition algorithm) describing conversion of Ps-related states into positron traps is applied to identify volumetric changes in nanocomposites in respect to stoichiometric g-As2Se3/PVP. The governing process in under-stoichiometric nanocomposites (x < 40) is recognized as unified positron-to-Ps trapping conversion, disappearing positron traps being PVP-nanosized vacancies character to g-As-Se. However, there is no alone trapping-modification process governing such effects in over-stoichiometric nanocomposites (x > 40), possessing molecular-network structure with principally different trapping sites.