Nature Communications ( IF 14.7 ) Pub Date : 2022-08-03 , DOI: 10.1038/s41467-022-32182-7 Matteo Cucchi 1, 2 , Anton Weissbach 2 , Lukas M Bongartz 2 , Richard Kantelberg 2 , Hsin Tseng 2 , Hans Kleemann 2 , Karl Leo 2
Despite their increasing usefulness in a wide variety of applications, organic electrochemical transistors still lack a comprehensive and unifying physical framework able to describe the current-voltage characteristics and the polymer/electrolyte interactions simultaneously. Building upon thermodynamic axioms, we present a quantitative analysis of the operation of organic electrochemical transistors. We reveal that the entropy of mixing is the main driving force behind the redox mechanism that rules the transfer properties of such devices in electrolytic environments. In the light of these findings, we show that traditional models used for organic electrochemical transistors, based on the theory of field-effect transistors, fall short as they treat the active material as a simple capacitor while ignoring the material properties and energetic interactions. Finally, by analyzing a large spectrum of solvents and device regimes, we quantify the entropic and enthalpic contributions and put forward an approach for targeted material design and device applications.
中文翻译:
有机电化学晶体管的热力学
尽管它们在广泛的应用中越来越有用,但有机电化学晶体管仍然缺乏能够同时描述电流-电压特性和聚合物/电解质相互作用的全面和统一的物理框架。基于热力学公理,我们对有机电化学晶体管的运行进行了定量分析。我们揭示了混合熵是氧化还原机制背后的主要驱动力,该机制决定了电解环境中此类器件的转移特性。鉴于这些发现,我们展示了用于有机电化学晶体管的传统模型,基于场效应晶体管的理论,达不到要求,因为他们将活性材料视为简单的电容器,而忽略了材料特性和能量相互作用。最后,通过分析大量溶剂和器件方案,我们量化了熵和焓贡献,并提出了一种针对目标材料设计和器件应用的方法。