当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosting Hydrogen Evolution Performance of a CdS-Based Photocatalyst: In Situ Transition from Type I to Type II Heterojunction during Photocatalysis
ACS Catalysis ( IF 11.3 ) Pub Date : 2022-08-04 , DOI: 10.1021/acscatal.2c01877 Xiangyu Meng 1 , Shuyan Wang 1 , Chenchen Zhang 1 , Congzhao Dong 1 , Rui Li 1 , Bonan Li 1 , Qiang Wang 1 , Yong Ding 1, 2
ACS Catalysis ( IF 11.3 ) Pub Date : 2022-08-04 , DOI: 10.1021/acscatal.2c01877 Xiangyu Meng 1 , Shuyan Wang 1 , Chenchen Zhang 1 , Congzhao Dong 1 , Rui Li 1 , Bonan Li 1 , Qiang Wang 1 , Yong Ding 1, 2
Affiliation
The heterojunction in photocatalysis establishes an internal electric field between the semiconductors, which is one of the effective methods for enhancing the separation of photogenerated carriers of semiconductors. Herein, a strategy is rationally proposed, which is performed in situ to transform the hybrid photocatalyst composed of the Ni–Co Prussian blue analogue (PBA) and CdS (CP) into another more active hybrid photocatalyst consisting of NiS and CdS (CN) during photocatalysis in the sulfur sacrificial reagent. The coupled component on the n-type CdS is converted from an n-type Ni–Co PBA to another p-type NiS during the process, thus constructing a p–n heterojunction and achieving a good photocatalytic hydrogen evolution reaction (HER) performance. Moreover, the carrier transfer mechanism is also an in situ transition from type I in CP to type II in CN during the HER process, which is supported by surface photovoltage and transient absorption spectroscopy. The CP-2 photocatalyst in the sulfur sacrificial reagent has a high photocatalytic hydrogen evolution amount of 176.6 μmol, which is 13.9 times higher than that of pure CdS. Overall, this work develops an in situ carrier transfer mechanism conversion strategy for expanding the HER photocatalysts and enhancing their photocatalytic HER performance.
中文翻译:
提高基于 CdS 的光催化剂的析氢性能:光催化过程中从 I 型异质结到 II 型异质结的原位转变
光催化中的异质结在半导体之间建立了一个内部电场,是增强半导体光生载流子分离的有效方法之一。在此,合理地提出了一种策略,该策略在原位进行,将由 Ni-Co 普鲁士蓝类似物 (PBA) 和 CdS (CP) 组成的杂化光催化剂转化为另一种更活跃的由 NiS 和 CdS (CN) 组成的杂化光催化剂。硫牺牲剂中的光催化作用。在此过程中,n型CdS上的耦合组分从n型Ni-Co PBA转化为另一种p型NiS,从而构建了p-n异质结并获得了良好的光催化析氢反应(HER)性能。而且,载流子转移机制也是在 HER 过程中从 CP 中的 I 型到 CN 中的 II 型的原位转变,这得到了表面光电压和瞬态吸收光谱的支持。硫牺牲试剂中的CP-2光催化剂具有176.6 μmol的高光催化析氢量,是纯CdS的13.9倍。总体而言,这项工作开发了一种原位载流子转移机制转换策略,用于扩展 HER 光催化剂并提高其光催化 HER 性能。
更新日期:2022-08-04
中文翻译:
提高基于 CdS 的光催化剂的析氢性能:光催化过程中从 I 型异质结到 II 型异质结的原位转变
光催化中的异质结在半导体之间建立了一个内部电场,是增强半导体光生载流子分离的有效方法之一。在此,合理地提出了一种策略,该策略在原位进行,将由 Ni-Co 普鲁士蓝类似物 (PBA) 和 CdS (CP) 组成的杂化光催化剂转化为另一种更活跃的由 NiS 和 CdS (CN) 组成的杂化光催化剂。硫牺牲剂中的光催化作用。在此过程中,n型CdS上的耦合组分从n型Ni-Co PBA转化为另一种p型NiS,从而构建了p-n异质结并获得了良好的光催化析氢反应(HER)性能。而且,载流子转移机制也是在 HER 过程中从 CP 中的 I 型到 CN 中的 II 型的原位转变,这得到了表面光电压和瞬态吸收光谱的支持。硫牺牲试剂中的CP-2光催化剂具有176.6 μmol的高光催化析氢量,是纯CdS的13.9倍。总体而言,这项工作开发了一种原位载流子转移机制转换策略,用于扩展 HER 光催化剂并提高其光催化 HER 性能。