当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The spatial profile of skin indentation shapes tactile perception across stimulus frequencies
Scientific Reports ( IF 3.8 ) Pub Date : 2022-08-01 , DOI: 10.1038/s41598-022-17324-7
Roman V Grigorii 1 , J Edward Colgate 1 , Roberta Klatzky 2
Affiliation  

Multiple human sensory systems exhibit sensitivity to spatial and temporal variations of physical stimuli. Vision has evolved to offer high spatial acuity with limited temporal sensitivity, while audition has developed complementary characteristics. Neural coding in touch has been believed to transition from a spatial to a temporal domain in relation to surface scale, such that coarse features (e.g., a braille cell or corduroy texture) are coded as spatially distributed signals, while fine textures (e.g., fine-grit sandpaper) are encoded by temporal variation. However, the interplay between the two domains is not well understood. We studied tactile encoding with a custom-designed pin array apparatus capable of deforming the fingerpad at 5 to 80 Hz in each of 14 individual locations spaced 2.5 mm apart. Spatial variation of skin indentation was controlled by moving each of the pins at the same frequency and amplitude, but with phase delays distributed across the array. Results indicate that such stimuli enable rendering of shape features at actuation frequencies up to 20 Hz. Even at frequencies > 20 Hz, however, spatial variation of skin indentation continues to play a vital role. In particular, perceived roughness is affected by spatial variation within the fingerpad even at 80 Hz. We provide evidence that perceived roughness is encoded via a summary measure of skin displacement. Relative displacements in neighboring pins of less than 10 µm generate skin stretch, which regulates the roughness percept.



中文翻译:

皮肤压痕的空间轮廓塑造了跨刺激频率的触觉感知

多个人类感官系统表现出对物理刺激的空间和时间变化的敏感性。视觉已经发展到提供具有有限时间敏感性的高空间敏锐度,而听觉已经发展出互补的特征。触摸中的神经编码被认为是从空间域过渡到与表面尺度相关的时间域,这样粗略的特征(例如,盲文单元或灯芯绒纹理)被编码为空间分布的信号,而精细的纹理(例如,精细的-grit 砂纸)由时间变化编码。然而,这两个领域之间的相互作用并没有得到很好的理解。我们使用定制设计的针阵列装置研究了触觉编码,该装置能够在间隔 2.5 毫米的 14 个单独位置中以 5 到 80 赫兹的频率使指垫变形。通过以相同的频率和幅度移动每个针脚来控制皮肤压痕的空间变化,但相位延迟分布在整个阵列中。结果表明,这种刺激能够以高达 20 Hz 的驱动频率呈现形状特征。然而,即使频率 > 20 Hz,皮肤压痕的空间变化仍然起着至关重要的作用。特别是,即使在 80 Hz 时,感知的粗糙度也会受到指垫内空间变化的影响。我们提供的证据表明,感知粗糙度是通过皮肤位移的汇总测量来编码的。相邻引脚中小于 10 µm 的相对位移会产生皮肤拉伸,从而调节粗糙度感知。结果表明,这种刺激能够以高达 20 Hz 的驱动频率呈现形状特征。然而,即使频率 > 20 Hz,皮肤压痕的空间变化仍然起着至关重要的作用。特别是,即使在 80 Hz 时,感知的粗糙度也会受到指垫内空间变化的影响。我们提供的证据表明,感知粗糙度是通过皮肤位移的汇总测量来编码的。相邻引脚中小于 10 µm 的相对位移会产生皮肤拉伸,从而调节粗糙度感知。结果表明,这种刺激能够以高达 20 Hz 的驱动频率呈现形状特征。然而,即使频率 > 20 Hz,皮肤压痕的空间变化仍然起着至关重要的作用。特别是,即使在 80 Hz 时,感知的粗糙度也会受到指垫内空间变化的影响。我们提供的证据表明,感知粗糙度是通过皮肤位移的汇总测量来编码的。相邻引脚中小于 10 µm 的相对位移会产生皮肤拉伸,从而调节粗糙度感知。我们提供的证据表明,感知粗糙度是通过皮肤位移的汇总测量来编码的。相邻引脚中小于 10 µm 的相对位移会产生皮肤拉伸,从而调节粗糙度感知。我们提供的证据表明,感知粗糙度是通过皮肤位移的汇总测量来编码的。相邻引脚中小于 10 µm 的相对位移会产生皮肤拉伸,从而调节粗糙度感知。

更新日期:2022-08-03
down
wechat
bug