近年来,坏死性凋亡已成为缺血性中风的重要机制之一。坏死性凋亡可在内皮细胞中迅速激活,导致血管损伤和神经炎症。三七皂苷(PNS),从三七根中提取的成分(Burk.) FH Chen 常用于治疗缺血性中风,但其分子机制和靶点尚未完全阐明。我们的研究旨在阐明三七总皂苷通过调节短暂氧糖剥夺(OGD/再供应[R])脑微血管内皮细胞(BMEC)中的RIP1-RIP3-MLKL信号通路来发挥抗坏死性凋亡作用。在体外,通过测试 OGD/R 在泛 caspase 抑制剂 z-VAD-FMK 存在下的作用,建立了大鼠 BMEC 的坏死性凋亡模型。施用 PNS 和 Nec-1 后,研究 OGD/R 损伤后 BMEC 中的细胞活力、细胞死亡方式、RIP1-RIP3-MLKL 通路的表达和线粒体膜电位 (Δψm) 水平。结果表明,通过 CCK-8 分析确定,PNS 显着增强了 BMEC 的细胞活力,并通过流式细胞术和 TEM 保护 BMEC 免于坏死性凋亡。此外,PNS还抑制RIP1、RIP3、MLKL的磷酸化以及下游PGAM5和Drp1的表达,而在Nec-1干预中也观察到类似的结果。我们进一步研究了 PNS 是否阻止了 Δψm 去极化。我们目前的研究结果表明,PNS 通过抑制 RIP1-RIP3-MLK 信号通路和减轻线粒体损伤,有效减少暴露于 OGD/R 的 BMEC 中坏死性凋亡的发生。这项研究为三七总皂苷在临床中的应用提供了新的见解。我们目前的研究结果表明,PNS 通过抑制 RIP1-RIP3-MLK 信号通路和减轻线粒体损伤,有效减少暴露于 OGD/R 的 BMEC 中坏死性凋亡的发生。这项研究为三七总皂苷在临床中的应用提供了新的见解。我们目前的研究结果表明,PNS 通过抑制 RIP1-RIP3-MLK 信号通路和减轻线粒体损伤,有效减少暴露于 OGD/R 的 BMEC 中坏死性凋亡的发生。这项研究为三七总皂苷在临床中的应用提供了新的见解。
"点击查看英文标题和摘要"
Panax notoginseng Saponins Protect Brain Microvascular Endothelial Cells against Oxygen-Glucose Deprivation/Resupply-Induced Necroptosis via Suppression of RIP1-RIP3-MLKL Signaling Pathway
Recently, necroptosis has emerged as one of the important mechanisms of ischemia stroke. Necroptosis can be rapidly activated in endothelial cells to cause vascular damage and neuroinflammation. Panax notoginseng saponins (PNS), an ingredient extracted from the root of Panax notoginseng (Burk.) F.H. Chen, was commonly used for ischemic stroke, while its molecular mechanism and targets have not been fully clarified. Our study aimed to clarify the anti-necroptosis effect of PNS by regulating RIP1-RIP3-MLKL signaling pathway in brain microvascular endothelial cells (BMECs) subjected to transient oxygen-glucose deprivation (OGD/resupply [R]). In vitro, the necroptosis model of rat BMECs was established by testing the effect of OGD/R in the presence of the pan-caspase inhibitor z-VAD-FMK. After administration of PNS and Nec-1, cell viability, cell death modality, the expression of RIP1-RIP3-MLKL pathway and mitochondrial membrane potential (Δψm) level were investigated in BMECs upon OGD/R injury. The results showed that PNS significantly enhanced cell viability of BMECs determined by CCK-8 analysis, and protected BMECs from necroptosis by Flow cytometry and TEM. In addition, PNS inhibited the phosphorylation of RIP1, RIP3, MLKL and the downstream expression of PGAM5 and Drp1, while similar results were observed in Nec-1 intervention. We further investigated whether PNS prevented the Δψm depolarization. Our current findings showed that PNS effectively reduced the occurrence of necroptosis in BMECs exposed to OGD/R by inhibition of the RIP1-RIP3-MLK signaling pathway and mitigation of mitochondrial damage. This study provided a novel insight of PNS application in clinics.