Nature Communications ( IF 14.7 ) Pub Date : 2022-07-28 , DOI: 10.1038/s41467-022-31881-5 Jinghao Li 1, 2, 3 , Xiaohan Li 1, 2 , Yabin Da 4 , Jiali Yu 1, 2 , Bin Long 1, 2 , Peng Zhang 1, 2 , Christopher Bakker 3 , Bruce A McCarl 4 , Joshua S Yuan 5 , Susie Y Dai 1, 2
Chemical pollution threatens human health and ecosystem sustainability. Persistent organic pollutants (POPs) like per- and polyfluoroalkyl substances (PFAS) are expensive to clean up once emitted. Innovative and synergistic strategies are urgently needed, yet process integration and cost-effectiveness remain challenging. An in-situ PFAS remediation system is developed to employ a plant-derived biomimetic nano-framework to achieve highly efficient adsorption and subsequent fungal biotransformation synergistically. The multiple component framework is presented as Renewable Artificial Plant for In-situ Microbial Environmental Remediation (RAPIMER). RAPIMER exhibits high adsorption capacity for the PFAS compounds and diverse adsorption capability toward co-contaminants. Subsequently, RAPIMER provides the substrates and contaminants for in situ bioremediation via fungus Irpex lacteus and promotes PFAS detoxification. RAPIMER arises from cheap lignocellulosic sources, enabling a broader impact on sustainability and a means for low-cost pollutant remediation.
中文翻译:
通过仿生多功能木质纤维素纳米框架进行可持续环境修复
化学污染威胁着人类健康和生态系统的可持续性。持久性有机污染物 (POPs),如全氟和多氟烷基物质 (PFAS),一旦排放,清理起来成本高昂。迫切需要创新和协同战略,但流程整合和成本效益仍然具有挑战性。开发了一种原位 PFAS 修复系统,采用植物衍生的仿生纳米框架,协同实现高效吸附和随后的真菌生物转化。多组件框架被呈现为用于原位微生物环境修复的可再生人工植物 (RAPIMER)。RAPIMER 表现出对 PFAS 化合物的高吸附能力和对共污染物的多种吸附能力。随后,Irpex lacteus并促进 PFAS 解毒。RAPIMER 源自廉价的木质纤维素来源,能够对可持续性产生更广泛的影响,并成为低成本污染物修复的手段。