当前位置: X-MOL 学术 › Visual Informatics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A review of feature fusion-based media popularity prediction methods
Visual Informatics Pub Date : 2022-07-27 , DOI: 10.1016/j.visinf.2022.07.003
An-An Liu , Xiaowen Wang , Ning Xu , Junbo Guo , Guoqing Jin , Quan Zhang , Yejun Tang , Shenyuan Zhang

With the popularization of social media, the way of information transmission has changed, and the prediction of information popularity based on social media platforms has attracted extensive attention. Feature fusion-based media popularity prediction methods focus on the multi-modal features of social media, which aim at exploring the key factors affecting media popularity. Meanwhile, the methods make up for the deficiency in feature utilization of traditional methods based on information propagation processes. In this paper, we review feature fusion-based media popularity prediction methods from the perspective of feature extraction and predictive model construction. Before that, we analyze the influencing factors of media popularity to provide intuitive understanding. We further argue about the advantages and disadvantages of existing methods and datasets to highlight the future directions. Finally, we discuss the applications of popularity prediction. To the best of our knowledge, this is the first survey reporting feature fusion-based media popularity prediction methods.



中文翻译:

基于特征融合的媒体流行度预测方法综述

随着社交媒体的普及,信息传播方式发生了变化,基于社交媒体平台的信息流行度预测受到广泛关注。基于特征融合的媒体流行度预测方法关注社交媒体的多模态特征,旨在探索影响媒体流行度的关键因素。同时,弥补了传统基于信息传播过程的方法在特征利用上的不足。在本文中,我们从特征提取和预测模型构建的角度回顾了基于特征融合的媒体流行度预测方法。在此之前,我们分析媒体流行度的影响因素,以提供直观的理解。我们进一步讨论现有方法和数据集的优缺点,以突出未来的方向。最后,我们讨论了流行度预测的应用。据我们所知,这是第一个调查报告基于特征融合的媒体流行度预测方法。

更新日期:2022-07-27
down
wechat
bug