当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrasensitive capacitive tactile sensor with heterostructured active layers for tiny signal perception
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-07-25 , DOI: 10.1016/j.cej.2022.138258
Hongsen Niu , Yuke Chen , Eun-Seong Kim , Weijia Zhou , Yang Li , Nam-Young Kim

The development of capacitive tactile sensors with both ultrasensitivity and ultrafast response/relaxation is crucial for the development of intelligent healthcare monitoring technology. Despite the significant improvement in the sensing performance presented by the introduction of microstructures into the dielectric or electrode layers, meeting the demands of intellectualization remains a major challenge. Herein, a strategy to simultaneously introduce microstructures in both the dielectric and electrode layers is developed. The hierarchical sea-urchin TiO2 particle-in-micropore (HSP-MP) structure in the dielectric layer induces stress concentration near the micropore regions, significantly enhancing the sensitivity and toughness of the device. The sparsely spaced large microcone improves the sensitivity of the hierarchical microcone (HM) structure in the electrode layer, while the small microcone reduces the hysteresis caused by interfacial adhesion. With the synergistic effect of the HSP-MP&HM structure, the proposed tactile sensor achieves ultrasensitivity of 10.5 kPa−1, ultrafast response/relaxation time of 5.6/5.6 ms, and ultralow limit of detection of 0.1 Pa. These sensing properties are demonstrated in practical applications, including tiny signal perception of the human fingertip pulse, tiny muscle motion perception for Morse code transmission, and high-resolution flexible perception array with pressure mapping capability.



中文翻译:

具有异质结构有源层的超灵敏电容式触觉传感器,用于微小的信号感知

开发具有超灵敏性和超快响应/松弛的电容式触觉传感器对于智能医疗保健监测技术的发展至关重要。尽管将微结构引入电介质或电极层显着提高了传感性能,但满足智能化需求仍然是一项重大挑战。在此,开发了一种在介电层和电极层中同时引入微结构的策略。分级海胆TiO 2介电层中的颗粒中微孔(HSP-MP)结构在微孔区域附近引起应力集中,显着提高了器件的灵敏度和韧性。稀疏间隔的大微锥提高了电极层中分级微锥(HM)结构的灵敏度,而小微锥减少了由界面粘附引起的滞后。借助 HSP-MP&HM 结构的协同效应,所提出的触觉传感器实现了 10.5 kPa -1的超灵敏度,超快响应/松弛时间为 5.6/5.6 ms,超低检测限为 0.1 Pa。这些传感特性在实际应用中得到了证明,包括人类指尖脉冲的微小信号感知、莫尔斯电码传输的微小肌肉运动感知,以及具有压力映射能力的高分辨率柔性感知阵列。

更新日期:2022-07-28
down
wechat
bug