当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Machine-Learning-Aided Computational Study of Covalent Organic Frameworks for Reversed C2H6/C2H4 Separation
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2022-07-25 , DOI: 10.1021/acs.iecr.2c01385
Xiaohao Cao 1, 2 , Zhengqing Zhang 1, 3 , Yanjing He 1, 4 , Wenjuan Xue 1, 2 , Hongliang Huang 1, 3 , Chongli Zhong 1, 3
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2022-07-25 , DOI: 10.1021/acs.iecr.2c01385
Xiaohao Cao 1, 2 , Zhengqing Zhang 1, 3 , Yanjing He 1, 4 , Wenjuan Xue 1, 2 , Hongliang Huang 1, 3 , Chongli Zhong 1, 3
Affiliation
![]() |
The efficient separation of ethane/ethene (C2H6/C2H4) is imperative yet challenging in industrial processes. We herein combine machine learning (ML) and molecular simulation to predict optimal covalent organic frameworks (COFs) for reversed C2H6/C2H4 separation before experimental efforts. Using molecular simulations, two out of 601 CoRE COFs were identified with excellent separation performance, and eight CoRE COFs exhibit high C2H6/C2H4 selectivity surpassing all of the reported values, although these COFs have a relatively low working capacity. As for ML, we found that the random forest (RF) algorithm displays the highest accuracy (R2 = 0.97) among the four different models, and the density (ρ) of COFs was identified as the key factor that influences the C2H6/C2H4 selectivity. Moreover, the 10 best hypothetical COFs (hCOFs) with excellent selectivity were further predicted. Ultimately, the competitive adsorption behaviors of guests in COF-303 were disclosed, and the adsorption selectivity of COF-303 was enhanced by introducing the fluorine group. Results of this work could provide molecular-level insights for future design and synthesis of novel COFs that can directly remove low-concentration ethane from the C2H4/C2H6 mixture.
中文翻译:
用于反向 C2H6/C2H4 分离的共价有机框架的机器学习辅助计算研究
乙烷/乙烯(C 2 H 6 /C 2 H 4)的有效分离在工业过程中势在必行,但也具有挑战性。我们在此结合机器学习 (ML) 和分子模拟来预测最佳共价有机框架 (COF),以便在实验之前进行反向 C 2 H 6 /C 2 H 4分离。使用分子模拟,鉴定出 601 个 CoRE COF 中有两个具有出色的分离性能,8 个 CoRE COF 表现出高 C 2 H 6 /C 2 H 4尽管这些 COF 的工作能力相对较低,但选择性超过了所有报道的值。对于 ML,我们发现随机森林 (RF) 算法在四种不同模型中显示出最高的准确度 ( R 2 = 0.97),并且 COF 的密度 (ρ) 被确定为影响 C 2 H的关键因素6 /C 2 H 4选择性。此外,进一步预测了具有优异选择性的 10 个最佳假设 COF (hCOF)。最终,揭示了客体在 COF-303 中的竞争吸附行为,并通过引入氟基团提高了 COF-303 的吸附选择性。这项工作的结果可以为未来设计和合成可以直接从 C 2 H 4 /C 2 H 6混合物中去除低浓度乙烷的新型 COF 提供分子水平的见解。
更新日期:2022-07-25
中文翻译:

用于反向 C2H6/C2H4 分离的共价有机框架的机器学习辅助计算研究
乙烷/乙烯(C 2 H 6 /C 2 H 4)的有效分离在工业过程中势在必行,但也具有挑战性。我们在此结合机器学习 (ML) 和分子模拟来预测最佳共价有机框架 (COF),以便在实验之前进行反向 C 2 H 6 /C 2 H 4分离。使用分子模拟,鉴定出 601 个 CoRE COF 中有两个具有出色的分离性能,8 个 CoRE COF 表现出高 C 2 H 6 /C 2 H 4尽管这些 COF 的工作能力相对较低,但选择性超过了所有报道的值。对于 ML,我们发现随机森林 (RF) 算法在四种不同模型中显示出最高的准确度 ( R 2 = 0.97),并且 COF 的密度 (ρ) 被确定为影响 C 2 H的关键因素6 /C 2 H 4选择性。此外,进一步预测了具有优异选择性的 10 个最佳假设 COF (hCOF)。最终,揭示了客体在 COF-303 中的竞争吸附行为,并通过引入氟基团提高了 COF-303 的吸附选择性。这项工作的结果可以为未来设计和合成可以直接从 C 2 H 4 /C 2 H 6混合物中去除低浓度乙烷的新型 COF 提供分子水平的见解。