当前位置:
X-MOL 学术
›
Appl. Surf. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Construction of FeNi3 and core–shell structured FeNi3@C microspheres toward broadband electromagnetic wave absorbing
Applied Surface Science ( IF 6.3 ) Pub Date : 2022-07-25 , DOI: 10.1016/j.apsusc.2022.154337
Na Chen , Zhang Dong , Xin-Yi Wang , Zhen-Jie Guan , Jian-Tang Jiang , Kang-Jun Wang
Applied Surface Science ( IF 6.3 ) Pub Date : 2022-07-25 , DOI: 10.1016/j.apsusc.2022.154337
Na Chen , Zhang Dong , Xin-Yi Wang , Zhen-Jie Guan , Jian-Tang Jiang , Kang-Jun Wang
![]() |
The rational design of electromagnetic wave absorption (EMA) materials featured with broadband and high-efficiency in gigahertz (GHz) is still a great challenge. In this study, we prove fabricating FeNi3 and FeNi3 @C core–shell microspheres to solve the challenge. The as-prepared FeNi3 microspheres exhibits extremely broad effective absorption bandwidth (EAB, RL ≥ 10 dB, > 90 % absorbing) of 10.3 GHz (7.7–18.0 GHz) at only 2.0 mm, occupying 64.4 % of the investigated frequency range with a single matching thickness. Such an outstanding EMA performances is credited to strong dielectric loss and magnetic loss. Compared with pristine FeNi3 , the delicate design of core–shell structure and tailored synergistic effect of FeNi3 and carbon produce positive reinforcement both in magnetic loss and dielectric loss, endowing FeNi3 @C samples with optimized impedance matching and appropriate attenuation ability. As a result, FeNi3 @C samples present impressive EMA performances from C to Ku band, especially for FeNi3 @C-3, demonstrating its potential of effectively dissipates electromagnetic wave in 6.1–18.0 GHz (RL ≥ 20 dB, > 99 % absorbing) by simply regulating a thickness of 1.5–2.5 mm. FeNi3 and FeNi3 @C feature with optional broad bandwidth (completely covering C, X and Ku band), strong absorption, and thin thickness ensure them a superior EMA material.
中文翻译:
FeNi3 和核壳结构FeNi3@C微球的构建面向宽带电磁波吸收
具有宽带和千兆赫兹 (GHz) 高效率的电磁波吸收 (EMA) 材料的合理设计仍然是一个巨大的挑战。在这项研究中,我们证明了制造 FeNi3 和 FeNi3@C 核壳微球来解决这一挑战。所制备的 FeNi3 微球在仅 2.0 mm 处表现出 10.3 GHz (7.7–18.0 GHz) 的极宽有效吸收带宽(EAB,RL ≥ 10 dB,> 90% 吸收),占据了所研究频率范围的 64.4 %。如此出色的 EMA 性能归功于强介电损耗和磁损耗。与原始的 FeNi3 相比,核壳结构的精细设计以及 FeNi3 和碳的定制协同效应在磁损耗和介电损耗方面均产生正增强,赋予FeNi3@C样品优化的阻抗匹配和适当的衰减能力。因此,FeNi3@C样品在 C 到 Ku 波段,尤其是 FeNi3@C-3 波段表现出令人印象深刻的 EMA 性能,展示了它通过简单地调节 1.5-2.5 mm 的厚度,即可有效消散 6.1–18.0 GHz 电磁波的潜力(RL ≥ 20 dB,> 99 % 吸收)。FeNi3 和 FeNi3@C 具有可选的宽带宽(完全覆盖 C、X 和 Ku 波段)、强吸收和薄厚度特性,使它们成为卓越的 EMA 材料。
更新日期:2022-07-25
中文翻译:

FeNi3 和核壳结构FeNi3@C微球的构建面向宽带电磁波吸收
具有宽带和千兆赫兹 (GHz) 高效率的电磁波吸收 (EMA) 材料的合理设计仍然是一个巨大的挑战。在这项研究中,我们证明了制造 FeNi3 和 FeNi3@C 核壳微球来解决这一挑战。所制备的 FeNi3 微球在仅 2.0 mm 处表现出 10.3 GHz (7.7–18.0 GHz) 的极宽有效吸收带宽(EAB,RL ≥ 10 dB,> 90% 吸收),占据了所研究频率范围的 64.4 %。如此出色的 EMA 性能归功于强介电损耗和磁损耗。与原始的 FeNi3 相比,核壳结构的精细设计以及 FeNi3 和碳的定制协同效应在磁损耗和介电损耗方面均产生正增强,赋予FeNi3@C样品优化的阻抗匹配和适当的衰减能力。因此,FeNi3@C样品在 C 到 Ku 波段,尤其是 FeNi3@C-3 波段表现出令人印象深刻的 EMA 性能,展示了它通过简单地调节 1.5-2.5 mm 的厚度,即可有效消散 6.1–18.0 GHz 电磁波的潜力(RL ≥ 20 dB,> 99 % 吸收)。FeNi3 和 FeNi3@C 具有可选的宽带宽(完全覆盖 C、X 和 Ku 波段)、强吸收和薄厚度特性,使它们成为卓越的 EMA 材料。