Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosting Hydrogen Evolution Reaction Activity of Amorphous Molybdenum Sulfide Under High Currents Via Preferential Electron Filling Induced by Tungsten Doping
Advanced Science ( IF 14.3 ) Pub Date : 2022-07-25 , DOI: 10.1002/advs.202202445 Dai Zhang 1 , Feilong Wang 2 , Wenqi Zhao 2 , Minghui Cui 2 , Xueliang Fan 3 , Rongqing Liang 1, 2 , Qiongrong Ou 1, 2 , Shuyu Zhang 1, 2
Advanced Science ( IF 14.3 ) Pub Date : 2022-07-25 , DOI: 10.1002/advs.202202445 Dai Zhang 1 , Feilong Wang 2 , Wenqi Zhao 2 , Minghui Cui 2 , Xueliang Fan 3 , Rongqing Liang 1, 2 , Qiongrong Ou 1, 2 , Shuyu Zhang 1, 2
Affiliation
The lack of highly efficient, durable, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) working at high current densities poses a significant challenge for the large-scale implementation of hydrogen production from renewable energy. Herein, amorphous molybdenum tungsten sulfide/nitrogen-doped reduced graphene oxide nanocomposites (a-MoWSx/N-RGO) are synthesized by plasma treatment for use as high-performance HER catalysts. By adjusting the plasma treatment duration and chemical composition, an optimal a-MoWSx/N-RGO catalyst is obtained, which exhibits a low overpotential of 348 mV at a current density of 1000 mA cm−2 and almost no decay after 24 h of working at this current density, outperforming commercial platinum/carbon (Pt/C) and previously reported heteroatom-doped MoS2-based catalysts. Based on density functional theory (DFT) calculations, it is found that with a reasonable tungsten doping level, the catalytic active site (2S2 − ) shows excellent catalytic performance working at high current densities because extra electrons preferentially fill at 2S2 − . The introduction of tungsten tends to lower the electronic structure energy, resulting in a closer-to-zero positive . Excessive tungsten introduction, however, can lead to structural damage and a worse HER performance under high current densities. The work provides a route towards rationally designing high-performance catalysts for the HER at industrial-level currents using earth-abundant elements.
中文翻译:
通过钨掺杂诱导的优先电子填充提高非晶硫化钼在大电流下的析氢反应活性
在高电流密度下工作的析氢反应(HER)缺乏高效、耐用且具有成本效益的电催化剂,这对大规模实施可再生能源制氢提出了重大挑战。在此,通过等离子体处理合成了无定形硫化钼钨/氮掺杂还原氧化石墨烯纳米复合材料(a-MoWS x /N-RGO),用作高性能HER催化剂。通过调整等离子体处理时间和化学成分,获得了最佳的a-MoWS x /N-RGO催化剂,其在1000 mA cm -2的电流密度下表现出348 mV的低过电位并且在此电流密度下工作 24 小时后几乎没有衰减,优于商业铂/碳 (Pt/C) 和先前报道的杂原子掺杂 MoS 2基催化剂。基于密度泛函理论(DFT)计算,发现在合理的钨掺杂水平下,催化活性位点(2S 2 -)在高电流密度下表现出优异的催化性能,因为额外的电子优先填充在2S 2 -。钨的引入往往会降低电子结构能量,导致接近于零的正 . 然而,过多的钨引入会导致结构损坏和在高电流密度下更差的 HER 性能。这项工作为使用地球丰富的元素在工业级电流下合理设计用于 HER 的高性能催化剂提供了一条途径。
更新日期:2022-07-25
中文翻译:
通过钨掺杂诱导的优先电子填充提高非晶硫化钼在大电流下的析氢反应活性
在高电流密度下工作的析氢反应(HER)缺乏高效、耐用且具有成本效益的电催化剂,这对大规模实施可再生能源制氢提出了重大挑战。在此,通过等离子体处理合成了无定形硫化钼钨/氮掺杂还原氧化石墨烯纳米复合材料(a-MoWS x /N-RGO),用作高性能HER催化剂。通过调整等离子体处理时间和化学成分,获得了最佳的a-MoWS x /N-RGO催化剂,其在1000 mA cm -2的电流密度下表现出348 mV的低过电位并且在此电流密度下工作 24 小时后几乎没有衰减,优于商业铂/碳 (Pt/C) 和先前报道的杂原子掺杂 MoS 2基催化剂。基于密度泛函理论(DFT)计算,发现在合理的钨掺杂水平下,催化活性位点(2S 2 -)在高电流密度下表现出优异的催化性能,因为额外的电子优先填充在2S 2 -。钨的引入往往会降低电子结构能量,导致接近于零的正