近年来,灌注细胞培养技术在生物制药行业引起了广泛关注。一种常见的应用是 N-1 灌注,用于强化分批补料生产过程并增加设施产量。在第一次以制造规模运行我们的灌注过程时,观察到了意外的细胞损伤。降低再循环泵速度导致细胞活力提高,这意味着泵剪切应力对细胞活力的影响。在这项研究中,我们使用聚甲基丙烯酸甲酯 (PMMA) 纳米颗粒来确定用于 N-1 灌注的两个不同尺寸的转子泵内的剪切应力。结果用于验证计算流体动力学 (CFD) 模型,以预测泵在不同运行条件下的最大剪切。CFD 模型将径向和网格间隙区域确定为泵内经历最大剪切应力的区域。然后使用该模型评估不同几何形状修改对泵叶的影响,并预测通过将网格和径向间隙分别增加 0.08 毫米和 0.13 毫米,最大剪切应力会降低 17%。该研究表明,CFD 可以成为预测旋转泵内部剪切应力的有用工具。结果可用于优化泵的运行条件,甚至可以定制泵的几何形状,以在不影响预设运行条件或关键放大参数的情况下节省时间和工艺规模扩大到制造的成本。然后使用该模型评估不同几何形状修改对泵叶的影响,并预测通过将网格和径向间隙分别增加 0.08 毫米和 0.13 毫米,最大剪切应力会降低 17%。该研究表明,CFD 可以成为预测旋转泵内部剪切应力的有用工具。结果可用于优化泵的运行条件,甚至可以定制泵的几何形状,以在不影响预设运行条件或关键放大参数的情况下节省时间和工艺规模扩大到制造的成本。然后使用该模型评估不同几何形状修改对泵叶的影响,并预测通过将网格和径向间隙分别增加 0.08 毫米和 0.13 毫米,最大剪切应力会降低 17%。该研究表明,CFD 可以成为预测旋转泵内部剪切应力的有用工具。结果可用于优化泵的运行条件,甚至可以定制泵的几何形状,以在不影响预设运行条件或关键放大参数的情况下节省时间和工艺规模扩大到制造的成本。该研究表明,CFD 可以成为预测旋转泵内部剪切应力的有用工具。结果可用于优化泵的运行条件,甚至可以定制泵的几何形状,以在不影响预设运行条件或关键放大参数的情况下节省时间和工艺规模扩大到制造的成本。该研究表明,CFD 可以成为预测旋转泵内部剪切应力的有用工具。结果可用于优化泵的运行条件,甚至可以定制泵的几何形状,以在不影响预设运行条件或关键放大参数的情况下节省时间和工艺规模扩大到制造的成本。
"点击查看英文标题和摘要"
Evaluating shear in perfusion rotary lobe pump using nanoparticle aggregates and computational fluid dynamics
Perfusion cell culture technology has gained a lot of interest in recent years in the biopharmaceutical industry. One common application is N-1 perfusion which is used to intensify fed batch production processes and increase facility output. Upon running our perfusion process for the first time at manufacturing scale, unexpected cell damage was observed. Reducing the recirculation pump speed resulted in improvements in cell viability which implied the impact of pump shear stress on cell viability. In this study, we used polymethyl methacrylate (PMMA) nanoparticles to determine the shear stress inside two different sized rotary lobe pumps used in N-1 perfusion. The results were used to validate a computational fluid dynamics (CFD) model to predict the maximum shear under different operating conditions of the pump. The CFD model identified the radial and mesh clearance zones as regions that experience the maximum shear stress inside the pump. The model was then used to evaluate the impact of different geometry modifications in the pump lobes, and it predicted a 17% reduction in the maximum shear stress by increasing the mesh and radial clearances by 0.08 mm and 0.13 mm, respectively. The study indicates that CFD can be a useful tool to predict shear stress inside rotary pumps. The results can be used to optimize the pump operating conditions or even customize the pump geometry to save time and cost of process scaling to manufacturing without compromising the preset operating conditions or critical scale-up parameters.