当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption – A review
Additive Manufacturing ( IF 10.3 ) Pub Date : 2022-07-22 , DOI: 10.1016/j.addma.2022.103051
Shakib Hyder Siddique , Paul J. Hazell , Hongxu Wang , Juan P. Escobedo , Ali A.H. Ameri

As a result of their mechanical characteristics, biological structures often provide inspiration for the development of high-performance mechanical structures. Nevertheless, traditional production processes are often incapable of precisely reproducing the intricate and exquisite nature of biological systems. Modern additive manufacturing techniques provide a pathway to the creation of materials with complex patterns that are inspired by biological processes. In this paper, we identify the different types of biomimetic porous structures seen in nature, many of which are composite structures, and categorise them. We also identify the natural species with porous structures and illustrate their functions. In addition, this review paper presents how these porous structures have been mimicked for engineering applications. Figures are shown to demonstrate the scale (meso, micro, and nano) at which the porous structures are emulated. As biological porous structures have been successfully mimicked into synthetic materials using additive manufacturing (AM), we classify the types of 3D printing with respect to impact loading applications and describe the various types of additive manufacturing processes used to manufacture biomimetic porous structures. This review paper will be of interest to academics looking to design innovative lightweight porous composite structures and use emerging technologies to investigate their energy absorption properties, which have a wide range of engineering applications.



中文翻译:

大自然的教训:用于吸收冲击能量的 3D 打印仿生多孔结构——综述

由于其机械特性,生物结构常常为高性能机械结构的发展提供灵感。然而,传统的生产过程往往无法精确再现生物系统错综复杂的本质。现代增材制造技术为创造受生物过程启发的具有复杂图案的材料提供了途径。在本文中,我们确定了自然界中所见的不同类型的仿生多孔结构,其中许多是复合结构,并对它们进行了分类。我们还确定了具有多孔结构的天然物种并说明了它们的功能。此外,这篇综述论文介绍了这些多孔结构是如何被模拟用于工程应用的。图中显示了模拟多孔结构的规模(中观、微米和纳米)。由于使用增材制造 (AM) 已成功地将生物多孔结构模拟到合成材料中,我们根据冲击载荷应用对 3D 打印的类型进行了分类,并描述了用于制造仿生多孔结构的各种增材制造工艺。这篇评论论文将吸引那些希望设计创新的轻质多孔复合材料结构并使用新兴技术研究其能量吸收特性的学者,这些特性具有广泛的工程应用。由于使用增材制造 (AM) 已成功地将生物多孔结构模拟到合成材料中,我们根据冲击载荷应用对 3D 打印的类型进行了分类,并描述了用于制造仿生多孔结构的各种增材制造工艺。这篇评论论文将吸引那些希望设计创新的轻质多孔复合材料结构并使用新兴技术研究其能量吸收特性的学者,这些特性具有广泛的工程应用。由于使用增材制造 (AM) 已成功地将生物多孔结构模拟到合成材料中,我们根据冲击载荷应用对 3D 打印的类型进行了分类,并描述了用于制造仿生多孔结构的各种增材制造工艺。这篇评论论文将吸引那些希望设计创新的轻质多孔复合材料结构并使用新兴技术研究其能量吸收特性的学者,这些特性具有广泛的工程应用。

更新日期:2022-07-22
down
wechat
bug