当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering an Insoluble Cathode Electrolyte Interphase Enabling High Performance NCM811//Graphite Pouch Cell at 60 °C
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-07-21 , DOI: 10.1002/aenm.202201631
Yuqing Chen 1 , Qiu He 2 , Ying Mo 1 , Wang Zhou 1 , Yun Zhao 3 , Nan Piao 4 , Chi Liu 5 , Peitao Xiao 6 , Hui Liu 5 , Baohua Li 3 , Shi Chen 7 , Li Wang 8 , Xiangming He 8 , Lidan Xing 9 , Jilei Liu 1
Affiliation  

High-energy lithium-ion batteries (LIBs) can be realized with the use of nickel-rich materials, however, their reversible operation requires long-term cathode-electrolyte interfacial (CEI) stability, especially for high-temperature applications, but how the CEIs evolves during operation is still a mystery. The unstable CEIs have been recently ascribed to them generating/disappearing/regenerating during Li+ extraction/insertion by in situ Fourier Transform Infrared Spectroscopy spectrum. Herein, a strategy of insoluble CEI is proposed toward addressing the interfacially induced deterioration of cathodes with a focus on Ni-rich layered oxides. Incorporating unsaturated units (CC/CC) to siloxane as electrolyte additives advances the commercial LiNi0.8Co0.1Mn0.1O2/graphite cells up to around 300 cycles at 60 °C with more than 85% capacity retention, along with the LiCoO2 cells reaching ≈90% capacity retention over 350 cycles under 80 °C. The experimentally and theoretically detailed investigation shows that the higher unsaturation bond with high reactive sites show more polymerization via a 3D topological pathway to form insoluble CEI species, leading to suppression of parasitic reactions, corrosive acid, transition-metal dissolution, stress corrosive cracking, and impedance growth. The scientific discoveries of this study highlight the pivotal role of electrode–electrolyte interactions and recapitulates the tried-and-true “electrolyte” approach for the future development of high-energy batteries under extreme temperature conditions.

中文翻译:

设计一种可在 60 °C 下实现高性能 NCM811//石墨软包电池的不溶性阴极电解质界面

高能锂离子电池 (LIB) 可以通过使用富镍材料来实现,但是,它们的可逆操作需要长期的阴极-电解质界面 (CEI) 稳定性,特别是对于高温应用,但是如何CEI 在运行过程中的演变仍然是一个谜。最近通过原位傅里叶变换红外光谱将不稳定的 CEI 归因于它们在 Li +提取/插入过程中产生/消失/再生。在此,提出了一种不溶性 CEI 的策略,以解决正极的界面诱导劣化问题,重点是富镍层状氧化物。将不饱和单元 (CC/CC) 结合到硅氧烷中作为电解质添加剂推进了商业化 LiNi 0.8 Co 0.1 Mn0.1 O 2 /石墨电池在 60 °C 下可循环约 300 次,容量保持率超过 85%,以及 LiCoO 2电池在 80°C 下经过 350 次循环后容量保持率约为 90%。实验和理论上的详细研究表明,具有高反应位点的较高不饱和键通过 3D 拓扑路径显示出更多的聚合作用,形成不溶性 CEI 物质,从而抑制寄生反应、腐蚀性酸、过渡金属溶解、应力腐蚀开裂和阻抗增长。这项研究的科学发现突出了电极-电解质相互作用的关键作用,并概括了在极端温度条件下未来开发高能电池的久经考验的“电解质”方法。
更新日期:2022-07-21
down
wechat
bug