金水还纤颗粒(JSHX)是一种用于治疗肺纤维化(PF)的临床中药配方。然而,JSHX的有效成分和分子机制仍不清楚。在本研究中,采用超高效液相色谱-Orbitrap Fusion 质谱(UPLC-Orbitrap Fusion MS)与网络药理学相结合的方法,确定了 JSHX 的成分和对抗 PF 的潜在分子机制。UPLC-Orbitrap Fusion MS 用于识别 JSHX 中存在的组分。在确定的成分的基础上,我们使用 SwissTargetPrediction 数据库进行目标预测,使用 STRING 数据库进行蛋白质-蛋白质相互作用 (PPI) 分析,使用 Metascape 进行基因本体论 (GO) 和京都基因和基因组百科全书 (KEGG) 通路富集分析,并使用 Cytoscape 3.7.2 构建组件-靶标-通路网络。采用分子对接技术验证核心成分与靶点的亲和性。最后,三种潜在生物活性成分的药理活性在转化生长因子 β1 (TGF-β1) 诱导的 A549 细胞纤维化模型中得到验证。结果,我们确定了266种成分,包括56种黄酮类化合物、52种皂苷、31种生物碱、10种香豆素、12种萜类化合物和105种其他成分。其中,90 个经过验证的成分预计可作用于 172 个 PF 相关靶标,它们通过调节细胞迁移、调节丝裂原活化蛋白激酶 (MAPK) 级联反应对 PF 产生治疗作用,减少氧化应激和抗炎活性。分子对接表明,核心成分可以自发地与受体蛋白结合,具有很强的结合力。在体外,与模型组相比,橙皮素、ruscogenin和甘草素显着抑制TGF-β1-中α-平滑肌肌动蛋白(α-SMA)和纤连蛋白(FN)的增加和e-钙粘蛋白(E-cad)的减少。诱导 A549 细胞。本研究首次表明,使用 UPLC-Orbitrap Fusion MS 结合网络药理学和实验验证,JSHX 可能通过抑制 PF 中关键因子的表达来发挥治疗 PF 的作用。该研究结果为深入了解JSHX的化学成分和药理活性提供了参考,为JSHX在PF治疗中的进一步科学研究和临床应用提供了参考。
"点击查看英文标题和摘要"
Systematic characterization of the components and molecular mechanisms of Jinshui Huanxian granules using UPLC-Orbitrap Fusion MS integrated with network pharmacology
Jinshui Huanxian granules (JSHX) is a clinical Chinese medicine formula used for treating pulmonary fibrosis (PF). However, the effective components and molecular mechanisms of JSHX are still unclear. In this study, a combination approach using ultra-high performance liquid chromatography-Orbitrap Fusion mass spectrometry (UPLC-Orbitrap Fusion MS) integrated with network pharmacology was followed to identify the components of JSHX and the underlying molecular mechanisms against PF. UPLC-Orbitrap Fusion MS was used to identify the components present in JSHX. On the basis of the identified components, we performed target prediction using the SwissTargetPrediction database, protein–protein interaction (PPI) analysis using STRING database, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis using Metascape and constructed a component-target-pathway network using Cytoscape 3.7.2. Molecular docking technology was used to verify the affinity between the core components and targets. Finally, the pharmacological activities of three potentially bioactive components were validated in transforming growth factor β1 (TGF-β1)-induced A549 cell fibrosis model. As a result, we identified 266 components, including 56 flavonoids, 52 saponins, 31 alkaloids, 10 coumarins, 12 terpenoids and 105 other components. Of these, 90 validated components were predicted to act on 172 PF-related targets and they exhibited therapeutic effects against PF via regulation of cell migration, regulation of the mitogen-activated protein kinase (MAPK) cascade, reduction of oxidative stress, and anti-inflammatory activity. Molecular docking showed that the core components could spontaneously bind to receptor proteins with a strong binding force. In vitro, compared to model group, hesperetin, ruscogenin and liquiritin significantly inhibited the increase of α-smooth muscle actin (α-SMA) and fibronectin (FN) and the decrease of e-cadherin (E-cad) in TGF-β1-induced A549 cells. This study is the first to show, using UPLC-Orbitrap Fusion MS combined with network pharmacology and experimental validation, that JSHX might exert therapeutic actions against PF by suppressing the expression of key factors in PF. The findings provide a deeper understanding of the chemical profiling and pharmacological activities of JSHX and a reference for further scientific research and clinical use of JSHX in PF treatment.