当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced Alkaline Oxygen Evolution Using Spin Polarization and Magnetic Heating Effects under an AC Magnetic Field
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-07-21 , DOI: 10.1021/acsami.2c05977 Hang-Bo Zheng 1 , Yuan-Li Wang 1 , Jia-Wei Xie 1 , Peng-Zhao Gao 1 , Dong-Yun Li 2 , Evgeny V Rebrov 3 , Hang Qin 1 , Xiao-Pan Liu 1 , Han-Ning Xiao 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-07-21 , DOI: 10.1021/acsami.2c05977 Hang-Bo Zheng 1 , Yuan-Li Wang 1 , Jia-Wei Xie 1 , Peng-Zhao Gao 1 , Dong-Yun Li 2 , Evgeny V Rebrov 3 , Hang Qin 1 , Xiao-Pan Liu 1 , Han-Ning Xiao 1
Affiliation
Renewable electricity from splitting water to produce hydrogen is a favorable technology to achieve carbon neutrality, but slow anodic oxygen evolution reaction (OER) kinetics limits its large-scale commercialization. Electron spin polarization and increasing the reaction temperature are considered as potential ways to promote alkaline OER. Here, it is reported that in the alkaline OER process under an AC magnetic field, a ferromagnetic ordered electrocatalyst can simultaneously act as a heater and a spin polarizer to achieve significant OER enhancement at a low current density. Moreover, its effect obviously precedes antiferromagnetic, ferrimagnetic, and diamagnetic electrocatalysts. In particular, the noncorrected overpotential of the ferromagnetic electrocatalyst Co at 10 mA cm–2 is reduced by a maximum of 36.6% to 243 mV at 4.320 mT. It is found that the magnetic heating effect is immediate, and more importantly, it is localized and hardly affects the temperature of the entire electrolytic cell. In addition, the spin pinning effect established on the ferromagnetic/paramagnetic interface generated during the reconstruction of the ferromagnetic electrocatalyst expands the ferromagnetic order of the paramagnetic layer. Also, the introduction of an external magnetic field further increases the orderly arrangement of spins, thereby promoting OER. This work provides a reference for the design of high-performance OER electrocatalysts under a magnetic field.
中文翻译:
在交流磁场下利用自旋极化和磁热效应增强碱性析氧
通过分解水产生氢气的可再生电力是实现碳中和的有利技术,但缓慢的阳极析氧反应 (OER) 动力学限制了其大规模商业化。电子自旋极化和提高反应温度被认为是促进碱性 OER 的潜在途径。在这里,据报道,在交流磁场下的碱性 OER 过程中,铁磁性有序电催化剂可以同时充当加热器和自旋极化器,以在低电流密度下实现显着的 OER 增强。此外,它的效果明显领先于反铁磁、亚铁磁和抗磁电催化剂。特别是,铁磁电催化剂 Co 在 10 mA cm –2下的未校正过电势在 4.320 mT 时最大降低 36.6% 至 243 mV。发现磁热效应是立竿见影的,更重要的是,它是局部的,几乎不影响整个电解槽的温度。此外,在铁磁电催化剂重构过程中产生的铁磁/顺磁界面上建立的自旋钉扎效应扩展了顺磁层的铁磁序。此外,外部磁场的引入进一步增加了自旋的有序排列,从而促进了OER。该工作为磁场下高性能OER电催化剂的设计提供了参考。
更新日期:2022-07-21
中文翻译:
在交流磁场下利用自旋极化和磁热效应增强碱性析氧
通过分解水产生氢气的可再生电力是实现碳中和的有利技术,但缓慢的阳极析氧反应 (OER) 动力学限制了其大规模商业化。电子自旋极化和提高反应温度被认为是促进碱性 OER 的潜在途径。在这里,据报道,在交流磁场下的碱性 OER 过程中,铁磁性有序电催化剂可以同时充当加热器和自旋极化器,以在低电流密度下实现显着的 OER 增强。此外,它的效果明显领先于反铁磁、亚铁磁和抗磁电催化剂。特别是,铁磁电催化剂 Co 在 10 mA cm –2下的未校正过电势在 4.320 mT 时最大降低 36.6% 至 243 mV。发现磁热效应是立竿见影的,更重要的是,它是局部的,几乎不影响整个电解槽的温度。此外,在铁磁电催化剂重构过程中产生的铁磁/顺磁界面上建立的自旋钉扎效应扩展了顺磁层的铁磁序。此外,外部磁场的引入进一步增加了自旋的有序排列,从而促进了OER。该工作为磁场下高性能OER电催化剂的设计提供了参考。