传统技术对油包水乳液的分离效率低下,膜技术存在膜污染问题,需要替代高效、防污的膜分离方法,以满足全球环保和能源回收日益增长的需求。在这里,我们展示了一种内部静电力驱动的超亲油膜-磁性粒子耦合系统,能够超有效地分离油包水乳液。具体而言,所制备的磁性纳米粒子由于其超亲油行为和磁性纳米粒子包裹的皮克林乳液之间的静电排斥力,显着促进了油包水乳液的分离。此外,磁性纳米颗粒结合到膜中以增加膜的粗糙度和超亲油能力,明显导致油包水乳液的超高效分离能力。同时,在磁性纳米粒子修饰的复合膜和磁性纳米粒子包裹的 Pickering 乳液引起的静电斥力的支持下,它们的分离性能非常稳定,在 10 次循环运行期间,由于增强的防污效能,其分离性能明显优于其他膜系统。因此,静电排斥力和界面力的结合使所构建的超亲油膜-磁性纳米粒子耦合系统显着表现出 8.76 × 10 的显着高分离通量 明显导致油包水乳液的超高效分离能力。同时,在磁性纳米粒子修饰的复合膜和磁性纳米粒子包裹的 Pickering 乳液引起的静电斥力的支持下,它们的分离性能非常稳定,在 10 次循环运行期间,由于增强的防污效能,其分离性能明显优于其他膜系统。因此,静电排斥力和界面力的结合使所构建的超亲油膜-磁性纳米粒子耦合系统显着表现出 8.76 × 10 的显着高分离通量 明显导致油包水乳液的超高效分离能力。同时,在磁性纳米粒子修饰的复合膜和磁性纳米粒子包裹的 Pickering 乳液引起的静电斥力的支持下,它们的分离性能非常稳定,在 10 次循环运行期间,由于增强的防污效能,其分离性能明显优于其他膜系统。因此,静电排斥力和界面力的结合使所构建的超亲油膜-磁性纳米粒子耦合系统显着表现出 8.76 × 10 的显着高分离通量 在磁性纳米粒子修饰的复合膜和磁性纳米粒子包裹的 Pickering 乳液引起的静电排斥力的支持下,它们的分离性能非常稳定,在 10 次循环运行期间,由于增强的防污功效,其分离性能明显优于其他膜系统。因此,静电排斥力和界面力的结合使所构建的超亲油膜-磁性纳米粒子耦合系统显着表现出 8.76 × 10 的显着高分离通量 在磁性纳米粒子修饰的复合膜和磁性纳米粒子包裹的 Pickering 乳液引起的静电排斥力的支持下,它们的分离性能非常稳定,在 10 次循环运行期间,由于增强的防污功效,其分离性能明显优于其他膜系统。因此,静电排斥力和界面力的结合使所构建的超亲油膜-磁性纳米粒子耦合系统显着表现出 8.76 × 10 的显着高分离通量在 pH 值为 10 和十二烷基硫酸钠表面活性剂的条件下,甲苯包水乳液的压力为4 L m -2 h -1 bar -1 ,远高于现有技术膜的现有报道。该研究将为实际情况下超高效稳定分离油包水乳液开辟新途径,并将这一概念推广到其他水包油乳液和含油废水处理领域。
"点击查看英文标题和摘要"
An internal electrostatic force-driven superoleophilic membrane-magnetic nanoparticles coupling system for superefficient water-in-oil emulsions separation
The inefficient separation of water-in-oil emulsions through conventional techniques and the troublesome membrane fouling of membrane technology call for alternative efficient and antifouling membrane separation approaches to meet the increasing demands for global environmental protection and energy recovery. Here, we demonstrate an internal electrostatic force-driven superoleophilic membrane-magnetic particles coupling system enabling water-in-oil emulsions super-efficiently separated. Specifically, as-prepared magnetic nanoparticles significantly facilitate the separation of water-in-oil emulsions due to their superoleophilic behaviors and electrostatic repulsion forces between the magnetic nanoparticles-encapsulated Pickering emulsions. Furthermore, the magnetic nanoparticles incorporate into the membrane to increase the roughness and superoleophilic ability, distinctly leading to superefficient separation capacity for water-in-oil emulsions. Meanwhile, their separation performances are so stable that remarkably outperform other membrane systems during 10-cycle operation owing to the enhanced antifouling efficacy, under the support of electrostatic repulsion forces caused by the magnetic nanoparticles-modified composite membrane and magnetic nanoparticles-encapsulated Pickering emulsions. Hence, the combination of the electrostatic repulsion forces and interfacial forces render the as-constructed superoleophilic membrane-magnetic nanoparticles coupling system dramatically exhibit a remarkably high separation flux of 8.76 × 104 L m−2 h−1 bar−1 for the water-in-toluene emulsion under the conditions of pH of 10 and sodium dodecyl sulfate surfactant, considerably higher than the existing reports of the state-of-the-art membranes. This study will open up new avenues for superefficient and stable separation of water-in-oil emulsions in actual situations, and this concept will be promising for extending to other oil-in-water emulsions and oily waste water treatment.