当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Real-Time Monitoring of the Dehydrogenation Behavior of a Mg2FeH6–MgH2 Composite by In Situ Transmission Electron Microscopy
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-07-19 , DOI: 10.1002/adfm.202204147
Juyoung Kim 1, 2 , Julien O. Fadonougbo 1, 3 , Jee‐Hwan Bae 4 , Min Kyung Cho 4 , Jaeyoung Hong 5 , Young Whan Cho 1 , Jong Wook Roh 6 , Gyeung Ho Kim 4 , Jun Hyun Han 7 , Young‐Su Lee 1 , Jung Young Cho 8 , Kyu Hyoung Lee 2 , Jin‐Yoo Suh 1 , Dong Won Chun 1
Affiliation  

Herein, real-time observations of dehydrogenation of a Mg2FeH6–MgH2 composite by means of in situ transmission electron microscopy (TEM) with advanced spatial (0.8 Å) and temporal (25 frames s−1) resolution are reported. Careful control and systematic variations of the reaction temperature and electron dose rate enable detailed and direct visualization of the characteristic decomposition of Mg2FeH6 into Mg and Fe, which occurs on the nanometer scale under optimal experimental conditions defined to minimize the electron-beam-driven Mg oxidation and dehydrogenation that take place in TEM. First, the formation of nanostructured fine Fe clusters in Mg metal and their growth via coalescence during dehydrogenation are verified. Additionally, fine monitoring of the in situ diffraction patterns acquired during decomposition of the composite allows separate evaluations of the desorption kinetics of the two coexisting phases, which confirm the synergetic dehydrogenation of this dual-phase system. It is envisioned that these findings will provide useful guidelines for reducing the gaps between nanoscale and bulk-scale research and designing hydrogen sorption conditions to enable efficient operation of a solid-state hydrogen storage system.

中文翻译:

通过原位透射电子显微镜实时监测 Mg2FeH6-MgH2 复合材料的脱氢行为

本文报道了通过原位透射电子显微镜 (TEM)实时观察 Mg 2 FeH 6 -MgH 2复合材料的脱氢,具有先进的空间 ( 0.8 Å) 和时间 (25 帧 s -1 ) 分辨率。对反应温度和电子剂量率的仔细控制和系统变化能够详细和直接地可视化 Mg 2 FeH 6的特征分解成 Mg 和 Fe,在定义的最佳实验条件下发生在纳米尺度上,以最大限度地减少在 TEM 中发生的电子束驱动的 Mg 氧化和脱氢。首先,验证了金属镁中纳米结构精细铁簇的形成及其在脱氢过程中通过聚结的生长。此外,对复合材料分解过程中获得的原位衍射图的精细监测允许单独评估两个共存相的解吸动力学,这证实了这种双相系统的协同脱氢。预计这些发现将为缩小纳米级和体级研究之间的差距以及设计氢吸附条件以实现固态储氢系统的有效运行提供有用的指导。
更新日期:2022-07-19
down
wechat
bug