当前位置: X-MOL 学术Energy Environ. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultralow-Energy-Barrier H2O2 Dissociation on Coordinatively Unsaturated Metal Centers in Binary Ce-Fe Prussian Blue Analogue for Efficient and Stable Photo-Fenton Catalysis
Energy & Environmental Materials ( IF 13.0 ) Pub Date : 2022-07-19 , DOI: 10.1002/eem2.12476
Wenting Zheng 1 , Hui Guo 2 , Changqing Zhu 1 , Cailiang Yue 1 , Wenlei Zhu 1 , Fuqiang Liu 1 , Zhao‐Xu Chen 2
Affiliation  

The low intrinsic activity of Fenton catalytic site and high demand for light-energy input inhibit the organic-pollution control efficiency of photo-Fenton process. Here, through structural design with density functional theory (DFT) calculations, Ce is predicted to enable the construction of coordinatively unsaturated metal centers (CUCs) in Prussian blue analogue (PBA), which can strongly adsorb H2O2 and donate sufficient electrons for directly splitting the O–O bond to produce ·OH. Using a substitution-co-assembly strategy, binary Ce-Fe PBA is then prepared, which rapidly degrades sulfamethoxazole with the pseudo-first-order kinetic rate constant exceeding reported values by 1–2 orders of magnitude. Meanwhile, the photogenerated electrons reduce Fe(III) and Ce(IV) to promote the metal valence cycle in CUCs and make sulfamethoxazole degradation efficiency only lose 6.04% in 5 runs. Overall, by introducing rare earth metals into transition metal–organic frameworks, this work guides the whole process for highly active CUCs from design and construction to mechanism exploration with DFT calculations, enabling ultrafast and stable photo-Fenton catalysis.

中文翻译:

二元 Ce-Fe 普鲁士蓝类似物中配位不饱和金属中心的超低能垒 H2O2 解离,实现高效稳定的光芬顿催化

Fenton催化位点的低本征活性和对光能输入的高需求抑制了光Fenton过程的有机污染控制效率。在这里,通过密度泛函理论(DFT)计算的结构设计,预测Ce能够在普鲁士蓝类似物(PBA)中构建配位不饱和金属中心(CUC),它可以强烈吸附H 2 O 2并为H 2 O 2 提供足够的电子直接裂解O-O键产生· OH。然后采用取代共组装策略,制备了二元 Ce-Fe PBA,它可以快速降解磺胺甲恶唑,准一级动力学速率常数超过报道值 1-2 个数量级。同时,光生电子还原Fe(III)和Ce(IV),促进CUCs中的金属价循环,使磺胺甲恶唑的降解效率在5次运行中仅损失6.04%。总体而言,通过将稀土金属引入过渡金属有机框架中,这项工作指导了高活性CUC从设计和构建到DFT计算机理探索的整个过程,实现了超快且稳定的光芬顿催化。
更新日期:2022-07-19
down
wechat
bug