Energy Storage Materials ( IF 18.9 ) Pub Date : 2022-07-16 , DOI: 10.1016/j.ensm.2022.07.024 Ru Xiao , Tong Yu , Shan Yang , Ke Chen , Zhuangnan Li , Zhibo Liu , Tianzhao Hu , Guangjian Hu , Jiong Li , Hui-Ming Cheng , Zhenhua Sun , Feng Li
Electrocatalytically reducing the energy barrier for Li2S deposition/dissociation is a promising strategy for high-rate Li-S batteries. However, the catalytic sites would be covered by the insulating Li2S product during discharge, which deteriorates the catalytic activity. Here, suggested by first-principles calculations, single-atom copper (SA-Cu) was screened out to endow the insulator-to-metal transition of adsorbed Li2S in view of the electronic structure. In addition to the thermodynamically reduced redox energy barrier, metallic Li2S nuclei deposited on SA-Cu decorated nitrogen-doped carbon fiber foam (SA-Cu@NCNF) with favorable electronic transport present 3D spherical clusters rather than conventional 2D lateral morphology by continuous 3D nucleation and growth. The Li2S deposition capacity and the catalytic efficiency of Li2S-covered catalytic sites are thus greatly improved. As a result, SA-Cu@NCNF based Li-S cells with a sulfur loading of 4 mg cm−2 retained an areal capacity of 1.60 mAh cm−2 at 5 C after 500 cycles (0.038% decay per cycle). A competitive areal capacity of 8.44 mAh cm−2 was obtained at 0.2 C with a sulfur loading of 10 mg cm−2. The demonstration of the distinctive design of catalysts to adjust the electronic structure of adsorbed Li2S paves the way for developing high-rate and long-life Li-S batteries.
中文翻译:
单原子铜催化剂对硫化锂的电子结构调整对高倍率锂硫电池的影响
电催化降低 Li 2 S 沉积/解离的能垒是高倍率 Li-S 电池的一种有前途的策略。然而,在放电过程中,催化位点会被绝缘的Li 2 S产物覆盖,从而降低催化活性。在这里,根据第一性原理计算,考虑到电子结构,筛选出单原子铜 (SA-Cu) 以赋予吸附的 Li 2 S 的绝缘体到金属的转变。除了热力学降低的氧化还原能垒,金属 Li 2沉积在 SA-Cu 装饰的氮掺杂碳纤维泡沫 (SA-Cu@NCNF) 上的 S 核具有良好的电子传输,呈现 3D 球形簇,而不是通过连续 3D 成核和生长的传统 2D 横向形态。从而大大提高了Li 2 S 的沉积能力和Li 2 S 覆盖的催化位点的催化效率。结果,基于 SA-Cu@NCNF 的 Li-S 电池,硫负载量为 4 mg cm -2,在 5 C 时,在 500 次循环后(每循环衰减 0.038%)保持了 1.60 mAh cm -2的面积容量。在 0.2 C 和 10 mg cm -2的硫负载下获得了 8.44 mAh cm -2的有竞争力的面积容量. 展示了用于调整吸附Li 2 S电子结构的催化剂的独特设计,为开发高倍率和长寿命的Li-S电池铺平了道路。