当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energetic properties of copper azide nanoparticles encapsulated within a conductive porous matrix via electrosynthesis
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-07-16 , DOI: 10.1016/j.cej.2022.138131
Chunpei Yu , Wenchao Zhang , Mingchun Xian , Junhong Chen , Wei Shi , Jiaxin Wang , Gexing Yang , Bonan Gu , Jiahai Ye , Kefeng Ma , Junwu Zhu

The copper-based azide (CA), as a sustainable alternative to currently-used primary explosives, will play a critical role in the deployment of miniature initiating systems owing to its outstanding blasting power and environmentally benign nature. However, a secure and controlled synthesis still remains challenging for the high-performance CA-based energetic film. Here, a conductive metal-organic framework (MOF) of cuprous 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) is employed as a template for the electrochemical preparation of the CA nanoparticles encapsulated with conductive porous matrix. Impressively, the composition, morphology, energetic characteristics (1090∼2780 J·g-1) and electrostatic sensitivity (0.19∼12.3 mJ) of such CA/CuTCNQ energetic films can be easily tuned by carefully adjusting current density and azidation time in order to achieve the tailored energy release in the form of combustion or detonation. Furthermore, density functional theory (DFT) calculations provide valuable insights for the electrochemical azidation mechanism of the CA/CuTCNQ film. This work pioneers a new pathway to develop the CA composite film as an interesting energetic material for advanced initiating applications.



中文翻译:

通过电合成封装在导电多孔基质中的叠氮化铜纳米粒子的能量特性

铜基叠氮化物 (CA) 作为目前使用的起爆药的可持续替代品,由于其出色的爆破能力和环境友好性,将在微型起爆系统的部署中发挥关键作用。然而,对于基于 CA 的高性能高能薄膜而言,安全可控的合成仍然具有挑战性。在这里,采用 7,7,8,8-四氰基醌二甲烷 (CuTCNQ) 的导电金属有机骨架 (MOF) 作为模板,用于电化学制备用导电多孔基质包裹的 CA 纳米粒子。令人印象深刻的是,成分,形态,能量特征(1090∼2780 J·g -1) 和这种 CA/CuTCNQ 高能薄膜的静电灵敏度 (0.19∼12.3 mJ) 可以通过仔细调整电流密度和叠氮化时间轻松调整,以实现以燃烧或爆轰形式定制的能量释放。此外,密度泛函理论 (DFT) 计算为 CA/CuTCNQ 薄膜的电化学叠氮化机理提供了有价值的见解。这项工作开辟了一条新途径,将 CA 复合薄膜开发为一种有趣的高能材料,用于先进的引发应用。

更新日期:2022-07-16
down
wechat
bug