当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vacancy-Rich MXene-Immobilized Ni Single Atoms as a High-Performance Electrocatalyst for the Hydrazine Oxidation Reaction
Advanced Materials ( IF 27.4 ) Pub Date : 2022-07-15 , DOI: 10.1002/adma.202204388
Shiqi Zhou 1 , Yunxuan Zhao 2 , Run Shi 2 , Yucheng Wang 3 , Anumol Ashok 1 , Frédéric Héraly 1 , Tierui Zhang 2, 4 , Jiayin Yuan 1
Affiliation  

Single-atom catalysts (SACs), on account of their outstanding catalytic potential, are currently emerging as high-performance materials in the field of heterogeneous catalysis. Constructing a strong interaction between the single atom and its supporting matrix plays a pivotal role. Herein, Ti3C2Tx-MXene-supported Ni SACs are reported by using a self-reduction strategy via the assistance of rich Ti vacancies on the Ti3C2Tx MXene surface, which act as the trap and anchor sites for individual Ni atoms. The constructed Ni SACs supported by the Ti3C2Tx MXene (Ni SACs/Ti3C2Tx ) show an ultralow onset potential of −0.03 V (vs reversible hydrogen electrode (RHE)) and an exceptional operational stability toward the hydrazine oxidation reaction (HzOR). Density functional theory calculations suggest a strong coupling of the Ni single atoms and their surrounding C atoms, which optimizes the electronic density of states, increasing the adsorption energy and decreasing the reaction activation energy, thus boosting the electrochemical activity. The results presented here will encourage a wider pursuit of 2D-materials-supported SACs designed by a vacancy-trapping strategy.

中文翻译:

空位丰富的 MXene 固定 Ni 单原子作为肼氧化反应的高性能电催化剂

单原子催化剂(SACs)由于其突出的催化潜力,目前正在成为非均相催化领域的高性能材料。在单个原子与其支持基质之间构建强相互作用起着关键作用。在此,Ti 3 C 2 T x -MXene 负载的 Ni SAC 是通过在 Ti 3 C 2 T x MXene 表面上的丰富 Ti 空位的帮助下使用自还原策略报道的,这些空位充当陷阱和锚定位点单个 Ni 原子。Ti 3 C 2 T x MXene (Ni SACs/Ti 3 C 2 )支持构建的 Ni SACsT x ) 显示出 -0.03 V 的超低起始电位(与可逆氢电极 (RHE) 相比)和对肼氧化反应 (HzOR) 的出色操作稳定性。密度泛函理论计算表明,Ni单原子与其周围的C原子强耦合,优化了电子态密度,增加了吸附能,降低了反应活化能,从而提高了电化学活性。这里展示的结果将鼓励更广泛地追求由空位捕获策略设计的二维材料支持的 SAC。
更新日期:2022-07-15
down
wechat
bug