当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Are Polymer-Based Electrolytes Ready for High-Voltage Lithium Battery Applications? An Overview of Degradation Mechanisms and Battery Performance
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-07-14 , DOI: 10.1002/aenm.202201264 Maria Angeles Cabañero Martínez 1 , Nicola Boaretto 1 , Andrew J. Naylor 2 , Francisco Alcaide 3 , Girish D. Salian 2 , Flavia Palombardini 4 , Elixabete Ayerbe 3 , Mateu Borras 4 , Montserrat Casas‐Cabanas 1, 5
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-07-14 , DOI: 10.1002/aenm.202201264 Maria Angeles Cabañero Martínez 1 , Nicola Boaretto 1 , Andrew J. Naylor 2 , Francisco Alcaide 3 , Girish D. Salian 2 , Flavia Palombardini 4 , Elixabete Ayerbe 3 , Mateu Borras 4 , Montserrat Casas‐Cabanas 1, 5
Affiliation
High-voltage lithium polymer cells are considered an attractive technology that could out-perform commercial lithium-ion batteries in terms of safety, processability, and energy density. Although significant progress has been achieved in the development of polymer electrolytes for high-voltage applications (> 4 V), the cell performance containing these materials still encounters certain challenges. One of the major limitations is posed by poor cyclability, which is affected by the low oxidative stability of standard polyether-based polymer electrolytes. In addition, the high reactivity and structural instability of certain common high-voltage cathode chemistries further aggravate the challenges. In this review, the oxidative stability of polymer electrolytes is comprehensively discussed, along with the key sources of cell degradation, and provides an overview of the fundamental strategies adopted for enhancing their cyclability. In this regard, a statistical analysis of the cell performance is provided by analyzing 186 publications reported in the last 17 years, to demonstrate the gap between the state-of-the-art and the requirements for high-energy density cells. Furthermore, the essential characterization techniques employed in prior research investigating the degradation of these systems are discussed to highlight their prospects and limitations. Based on the derived conclusions, new targets and guidelines are proposed for further research.
中文翻译:
聚合物基电解质是否已准备好用于高压锂电池应用?退化机制和电池性能概述
高压锂聚合物电池被认为是一项有吸引力的技术,在安全性、可加工性和能量密度方面可以胜过商用锂离子电池。尽管在用于高压应用(> 4 V)的聚合物电解质的开发方面取得了重大进展,但含有这些材料的电池性能仍面临一定的挑战。主要限制之一是循环性差,这受到标准聚醚基聚合物电解质的低氧化稳定性的影响。此外,某些常见的高压正极化学物质的高反应性和结构不稳定性进一步加剧了挑战。在这篇综述中,全面讨论了聚合物电解质的氧化稳定性,以及电池降解的关键来源,并概述了为提高其可循环性而采用的基本策略。在这方面,通过分析过去 17 年中报告的 186 篇出版物对电池性能进行了统计分析,以证明最新技术与高能量密度电池要求之间的差距。此外,讨论了先前研究这些系统退化的研究中使用的基本表征技术,以突出它们的前景和局限性。基于得出的结论,提出了新的目标和指导方针以供进一步研究。展示最先进技术与高能量密度电池要求之间的差距。此外,讨论了先前研究这些系统退化的研究中使用的基本表征技术,以突出它们的前景和局限性。基于得出的结论,提出了新的目标和指导方针以供进一步研究。展示最先进技术与高能量密度电池要求之间的差距。此外,讨论了先前研究这些系统退化的研究中使用的基本表征技术,以突出它们的前景和局限性。基于得出的结论,提出了新的目标和指导方针以供进一步研究。
更新日期:2022-07-14
中文翻译:
聚合物基电解质是否已准备好用于高压锂电池应用?退化机制和电池性能概述
高压锂聚合物电池被认为是一项有吸引力的技术,在安全性、可加工性和能量密度方面可以胜过商用锂离子电池。尽管在用于高压应用(> 4 V)的聚合物电解质的开发方面取得了重大进展,但含有这些材料的电池性能仍面临一定的挑战。主要限制之一是循环性差,这受到标准聚醚基聚合物电解质的低氧化稳定性的影响。此外,某些常见的高压正极化学物质的高反应性和结构不稳定性进一步加剧了挑战。在这篇综述中,全面讨论了聚合物电解质的氧化稳定性,以及电池降解的关键来源,并概述了为提高其可循环性而采用的基本策略。在这方面,通过分析过去 17 年中报告的 186 篇出版物对电池性能进行了统计分析,以证明最新技术与高能量密度电池要求之间的差距。此外,讨论了先前研究这些系统退化的研究中使用的基本表征技术,以突出它们的前景和局限性。基于得出的结论,提出了新的目标和指导方针以供进一步研究。展示最先进技术与高能量密度电池要求之间的差距。此外,讨论了先前研究这些系统退化的研究中使用的基本表征技术,以突出它们的前景和局限性。基于得出的结论,提出了新的目标和指导方针以供进一步研究。展示最先进技术与高能量密度电池要求之间的差距。此外,讨论了先前研究这些系统退化的研究中使用的基本表征技术,以突出它们的前景和局限性。基于得出的结论,提出了新的目标和指导方针以供进一步研究。