当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rational design of the FeS2/NiS2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc–air batteries
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2022-07-13 , DOI: 10.1039/d2ta03554e
Lei Wu 1 , Jixiao Li 1 , Chuan Shi 1 , Yongliang Li 1 , Hongwei Mi 1 , Libo Deng 1 , Qianling Zhang 1 , Chuanxin He 1 , Xiangzhong Ren 1
Affiliation  

Fine design of nanostructures of bifunctional electrocatalysts and developing low-cost, efficient and durable electrocatalytic materials are important directions for the development of sustainable energy storage and conversion devices such as electrolytic water and metal–air batteries. In this work, nickel–iron layered sulfide hollow double-shell nanorods were synthesized by a one-step hydrothermal self-templating process followed by a high-temperature sulfurization process. Benefiting from the large electrochemically active surface area of the layered nanosheets, the electronic regulation of the FeS2/NiS2 heterogeneous interface, and the mechanical support of the hollow core–shell structured nanorods, the synthesized FeS2/NiS2 hollow multi-shell nanorods with an open layered array structure (FeS2/NiS2 HDSNRs) show better electrocatalytic performance than the single component FeS2 and NiS2 electrocatalysts in alkaline electrolyte solution. In 1.0 M KOH solution for the oxygen reduction reaction, the FeS2/NiS2 HDSNRs electrocatalyst has a half-wave potential of 0.80 V vs. RHE and an overpotential of only 280 mV at a current density of 50 mA cm−2 for oxygen evolution reaction and the Tafel slope is only 33 mV dec−1. The FeS2/NiS2 HDSNRs electrocatalyst used as the cathode of a liquid zinc–air battery showed a peak power density of 130 mW cm−2 and a charge–discharge cycle life of 480 h at a current density of 5 mA cm−2, with a voltage gap of only 0.92 V. In addition, the assembled solid-state zinc–air battery also exhibits a charge–discharge cycle life of 11 h at a current density of 5 mA cm−2, and two solid-state batteries connected in series can also drive LED lights. This study provides new insights for the rational design of nickel–iron sulfides with a layered nanosheet-core–shell structure for electrocatalysis and renewable energy applications.

中文翻译:

合理设计FeS2/NiS2异质结界面结构以提高锌-空气电池的氧电催化性能

精细设计双功能电催化剂的纳米结构,开发低成本、高效、耐用的电催化材料,是电解水、金属-空气电池等可持续储能和转换装置发展的重要方向。在这项工作中,镍铁层状硫化物空心双壳纳米棒是通过一步水热自模板工艺和高温硫化工艺合成的。得益于层状纳米片的大电化学活性表面积、FeS 2 /NiS 2异质界面的电子调节以及空心核壳结构纳米棒的机械支撑,合成的 FeS 2 /NiS 2具有开放层状阵列结构的空心多壳纳米棒(FeS 2 /NiS 2 HDSNRs)在碱性电解质溶液中表现出比单组分FeS 2和NiS 2电催化剂更好的电催化性能。在用于氧还原反应的 1.0 M KOH 溶液中,FeS 2 /NiS 2 HDSNRs 电催化剂相对于RHE的半波电位为 0.80 V ,氧的过电位仅为 280 mV,电流密度为 50 mA cm -2演化反应和 Tafel 斜率仅为 33 mV dec -1。FeS 2 /NiS 2用作液态锌空气电池正极的 HDSNR 电催化剂在 5 mA cm -2的电流密度下显示出 130 mW cm -2的峰值功率密度和 480 小时的充放电循环寿命,电压间隙为仅0.92 V。此外,组装的固态锌空气电池在5 mA cm -2的电流密度下也表现出11 h的充放电循环寿命,两个串联的固态电池也可以驱动LED灯。本研究为合理设计用于电催化和可再生能源应用的具有层状纳米片-核-壳结构的镍-铁硫化物提供了新的见解。
更新日期:2022-07-13
down
wechat
bug