当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A highly active and stable 3D dandelion spore-structured self-supporting Ir-based electrocatalyst for proton exchange membrane water electrolysis fabricated using structural reconstruction
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2022-07-13 , DOI: 10.1039/d2ee01042a Kyeong-Rim Yeo 1 , Kug-Seung Lee 2 , Hoyoung Kim 3 , Jinwoo Lee 3 , Soo-Kil Kim 1
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2022-07-13 , DOI: 10.1039/d2ee01042a Kyeong-Rim Yeo 1 , Kug-Seung Lee 2 , Hoyoung Kim 3 , Jinwoo Lee 3 , Soo-Kil Kim 1
Affiliation
Proton exchange membrane water electrolysis (PEMWE), the most energy-efficient low-temperature electrolysis method, is promising for converting intermittent renewable energies into stable hydrogen chemical energy. However, the cumulative corrosive environment resulting from the acidic conditions required and the positive half-cell potentials imply that only materials having high intrinsic activity and stability can be used. Herein, we propose catalysts and a corresponding fabrication method that meets these requirements. A 3D dandelion spore-structured self-supporting IrNi electrocatalyst is directly fabricated on a porous transport layer through the adsorbed H-induced co-electrodeposition of a core–shell IrNi–Ir structure. Subsequent dealloying generates a highly porous nanostructured Ir-based framework robust to the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in a wide pH range. Specifically, it exhibited overpotentials of 248 mV (OER) and 15 mV (HER) at ±10 mA cm−2 in an acidic electrolyte with exceptional stability even after constant operation at 200 mA cm−2 for 50 h (OER) or 5000 potential cycles (HER). When used as a bifunctional catalyst (0.67 mg cm−2) for PEMWE, 6.5 A cm−2 was obtained at a cell voltage of 2.0 V. The degradation rate was only 1.58 mV h−1 under extremely harsh test conditions of 2 A cm−2 for 100 h, thus verifying the exceptional stability of a single cell. This is the first report of bifunctional catalysts with such high performance and stability fabricated using a simple method, and this work can aid the commercialization of PEMWE.
中文翻译:
一种用于质子交换膜水电解的高活性和稳定的 3D 蒲公英孢子结构自支撑 Ir 基电催化剂,使用结构重建制造
质子交换膜水电解(PEMWE)是最节能的低温电解方法,有望将间歇性可再生能源转化为稳定的氢化学能。然而,由所需的酸性条件和正半电池电位导致的累积腐蚀环境意味着只能使用具有高固有活性和稳定性的材料。在此,我们提出了满足这些要求的催化剂和相应的制造方法。通过吸附 H 诱导的核壳 IrNi-Ir 结构的共电沉积,在多孔传输层上直接制造 3D 蒲公英孢子结构自支撑 IrNi 电催化剂。随后的去合金化生成高度多孔的纳米结构 Ir 基框架,在宽 pH 范围内对析氧反应 (OER) 和析氢反应 (HER) 具有鲁棒性。具体来说,它在 ±10 mA cm 处表现出 248 mV (OER) 和 15 mV (HER) 的过电位-2在酸性电解质中具有出色的稳定性,即使在 200 mA cm -2下持续运行50 小时 (OER) 或 5000 次电势循环 (HER) 后也是如此。当用作PEMWE的双功能催化剂(0.67 mg cm -2 )时,在2.0 V的电池电压下获得6.5 A cm -2 。在2 A cm的极其苛刻的测试条件下降解速率仅为1.58 mV h -1 -2 100 小时,从而验证了单个电池的出色稳定性。这是使用简单方法制造的具有如此高性能和稳定性的双功能催化剂的首次报道,这项工作有助于 PEMWE 的商业化。
更新日期:2022-07-13
中文翻译:
一种用于质子交换膜水电解的高活性和稳定的 3D 蒲公英孢子结构自支撑 Ir 基电催化剂,使用结构重建制造
质子交换膜水电解(PEMWE)是最节能的低温电解方法,有望将间歇性可再生能源转化为稳定的氢化学能。然而,由所需的酸性条件和正半电池电位导致的累积腐蚀环境意味着只能使用具有高固有活性和稳定性的材料。在此,我们提出了满足这些要求的催化剂和相应的制造方法。通过吸附 H 诱导的核壳 IrNi-Ir 结构的共电沉积,在多孔传输层上直接制造 3D 蒲公英孢子结构自支撑 IrNi 电催化剂。随后的去合金化生成高度多孔的纳米结构 Ir 基框架,在宽 pH 范围内对析氧反应 (OER) 和析氢反应 (HER) 具有鲁棒性。具体来说,它在 ±10 mA cm 处表现出 248 mV (OER) 和 15 mV (HER) 的过电位-2在酸性电解质中具有出色的稳定性,即使在 200 mA cm -2下持续运行50 小时 (OER) 或 5000 次电势循环 (HER) 后也是如此。当用作PEMWE的双功能催化剂(0.67 mg cm -2 )时,在2.0 V的电池电压下获得6.5 A cm -2 。在2 A cm的极其苛刻的测试条件下降解速率仅为1.58 mV h -1 -2 100 小时,从而验证了单个电池的出色稳定性。这是使用简单方法制造的具有如此高性能和稳定性的双功能催化剂的首次报道,这项工作有助于 PEMWE 的商业化。