Cellular and Molecular Life Sciences ( IF 6.2 ) Pub Date : 2022-07-12 , DOI: 10.1007/s00018-022-04442-8
G A C Franken 1 , M A Huynen 2 , L A Martínez-Cruz 3 , R J M Bindels 1 , J H F de Baaij 1
|
Magnesium (Mg2+) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg2+ is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg2+ concentrations, therefore, unequivocally result in delayed cell growth and metabolic defects. To maintain physiological Mg2+ levels, all organisms rely on balanced Mg2+ influx and efflux via Mg2+ channels and transporters. This review compares the structure and the function of prokaryotic Mg2+ transporters and their eukaryotic counterparts. In prokaryotes, cellular Mg2+ homeostasis is orchestrated via the CorA, MgtA/B, MgtE, and CorB/C Mg2+ transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also have Mg2+ transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional properties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41 Na+/Mg2+ transporters. In eukaryotes, TRPM6 and TRPM7 Mg2+ channels provide an additional Mg2+ transport mechanism, consisting of a fusion of channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional regulatory pathways that determine their Mg2+ transport capacity. Our review demonstrates that understanding the structure and function of prokaryotic magnesiotropic proteins aids in our basic understanding of Mg2+ transport.
中文翻译:

镁转运蛋白在整个进化过程中的结构和功能比较
镁 (Mg 2+ ) 是最普遍的二价细胞内阳离子。作为许多酶促反应的辅助因子,Mg 2+对于蛋白质合成、能量产生和 DNA 稳定性至关重要。因此,细胞内 Mg 2+浓度的紊乱无疑会导致细胞生长延迟和代谢缺陷。为了维持生理 Mg 2+水平,所有生物都依赖于通过 Mg 2+通道和转运蛋白平衡的 Mg 2+流入和流出。本综述比较了原核 Mg 2+转运蛋白及其真核生物对应物的结构和功能。在原核生物中,细胞 Mg 2+体内平衡通过 CorA、MgtA/B、MgTE 和 CorB/C Mg 2+转运蛋白进行协调。对于 CorA、MgtE 和 CorB/C,形成选择性孔的基序在进化过程中是保守的。这些发现表明,CNNM 蛋白,即 CorB/C 的脊椎动物直系同源物,也具有 Mg 2+转运能力。虽然 CorA 和 CorB/C 蛋白与其各自的直系同源物共享总的四级结构和功能特性,但 MgTE 通道仅与 SLC41 Na + /Mg 2+转运蛋白共享选择性孔。在真核生物中,TRPM6 和 TRPM7 Mg 2+通道提供额外的 Mg 2+运输机制,由通道与激酶的融合组成。这些 TRP 通道的独特功能允许整合决定其 Mg 2+转运能力的激素、细胞和转录调节途径。我们的综述表明,了解原核强磁蛋白的结构和功能有助于我们对 Mg 2+转运的基本了解。