Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-07-08 , DOI: 10.1016/j.cej.2022.137946 Li Zhu , Xian Tong , Zengqi Ye , Zhiqiang Lin , Tianhong Zhou , Shengbin Huang , Yuncang Li , Jixing Lin , Cuie Wen , Jianfeng Ma
![]() |
Zinc (Zn)-based scaffold materials are receiving increasing interest as biodegradable scaffold materials for biomedical applications due to their low elastic modulus and open-cellular interconnected porous structures mimicking those of natural bone. However, the high degradation rate and insufficient mechanical strength of pure Zn scaffolds do not meet the comprehensive requirements for bone-tissue engineering applications. Here, we report on zinc phosphate (ZnP), zinc oxide (ZnO), and dual-phase ZnO + ZnP coatings on a biodegradable pure Zn foam via electrochemical anodic oxidation and subsequent phosphating. The dual-phase-coated foam sample showed a regular, almost spherical open-cellular interconnected porous structure with ∼ 7.9 μm thick surface layers of ZnO and ZnP. Electrochemical and immersion tests in Hanks’ solution showed that the dual-phase-coated foam sample exhibited the highest corrosion resistance, lowest corrosion rate of 172.9 μm/a, and lowest degradation rate of 0.5 mg/d among all the foam samples. Compressive test results showed that the dual-phase-coated foam sample exhibited the highest compressive yield strength (1.8 and 1.1 MPa), plateau strength (2.9 and 2.7 MPa), and compressive strain (90%) before and after 30 d immersion in Hanks’ solution among all the foam samples. Biocompatibility assessment showed that the dual-phase-coated foam sample showed the highest cell viability toward MC3T3-E1 and MG 63 cells in both direct and indirect cell assays among all the foam samples, and its 12.5% extract showed ∼ 107% cell viability of MC3T3-E1 cells and ∼ 101% cell viability of MG 63 cells, indicating a positive effect on cell survival and proliferation. Moreover, the dual-phase-coated Zn foam sample exhibited antibacterial ability against S. aureus. Overall, this dual-phase ZnO + ZnP-coated foam can be considered a promising biodegradable scaffold material for bone repair and regeneration applications.
中文翻译:
![](https://scdn.x-mol.com/jcss/images/paperTranslation.png)
磷酸锌、氧化锌及其在纯锌泡沫上的双相涂层,具有良好的耐腐蚀性、细胞相容性和抗菌能力,可用于潜在的可生物降解骨植入物应用
锌 (Zn) 基支架材料作为生物医学应用的可生物降解支架材料受到越来越多的关注,因为它们具有低弹性模量和模拟天然骨骼的开孔互连多孔结构。然而,纯锌支架降解率高,机械强度不足,不能满足骨组织工程应用的综合要求。在这里,我们报告了通过电化学阳极氧化和随后的磷化处理在可生物降解的纯锌泡沫上的磷酸锌 (ZnP)、氧化锌 (ZnO) 和双相 ZnO + ZnP 涂层。双相涂层泡沫样品显示出规则的、几乎球形的开孔互连多孔结构,具有约 7.9 μm 厚的 ZnO 和 ZnP 表面层。在汉克斯溶液中的电化学和浸泡试验表明,双相涂层泡沫样品在所有泡沫样品中表现出最高的耐腐蚀性,最低的腐蚀速率为 172.9 μm/a,最低的降解速率为 0.5 mg/d。压缩测试结果表明,双相涂层泡沫样品在汉克斯浸泡 30 d 前后表现出最高的压缩屈服强度(1.8 和 1.1 MPa)、平台强度(2.9 和 2.7 MPa)和压缩应变(90%)。 ' 所有泡沫样品中的溶液。生物相容性评估表明,在所有泡沫样品中,在直接和间接细胞测定中,双相包被的泡沫样品对 MC3T3-E1 和 MG 63 细胞的细胞活力最高,其 12.5% 的提取物显示出约 107% 的细胞活力MC3T3-E1 细胞和约 101% MG 63 细胞的细胞活力,表明对细胞存活和增殖有积极作用。此外,双相涂层的泡沫锌样品表现出抗菌能力金黄色葡萄球菌。总体而言,这种双相 ZnO + ZnP 涂层泡沫可被认为是一种用于骨修复和再生应用的有前途的可生物降解支架材料。