当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Coordination Number Dependent Catalytic Activity of Single-Atom Cobalt Catalysts for Fenton-Like Reaction
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-07-07 , DOI: 10.1002/adfm.202203001 Xiaoying Liang 1 , Di Wang 1 , Zhiyu Zhao 1 , Tong Li 1 , Yaowen Gao 1 , Chun Hu 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-07-07 , DOI: 10.1002/adfm.202203001 Xiaoying Liang 1 , Di Wang 1 , Zhiyu Zhao 1 , Tong Li 1 , Yaowen Gao 1 , Chun Hu 1
Affiliation
Single-atom catalysts (SACs) are widely investigated in Fenton-like reactions for environmental remediation, wherein their catalytic performance can be further improved by coordination structure modulation, but the relevant report is rare. Herein, a series of atomically dispersed cobalt catalysts with diverse coordination numbers (denoted as CoNx, x represents nitrogen coordination number) are synthesized and their peroxymonosulfate (PMS) conversion performance is explored. The catalytic specific activity of CoNx is found to be dependent on coordination number of single atomic Co sites, where the lowest-coordinated CoN2 catalyst exhibits the highest specific activity in PMS activation, followed by under-coordinated CoN3 and normal CoN4. Experimental and theoretical results reveal that reducing coordination number can increase the electron density of single Co atom in CoNx, which governs the Fenton-like performance of CoNx catalysts. Specifically, the entire Co–pyridinic NC motif serves as active centers for PMS conversion, where the single Co atom, and pyridinic N-bonded C atoms along with nitrogen vacancy neighboring the unsaturated Co–pyridinic N2 moiety account for PMS reduction and oxidation toward radical and singlet oxygen (1O2) generation, respectively. These findings provide a useful avenue to coordination number regulation of SACs for environmental applications.
中文翻译:
单原子钴催化剂对类芬顿反应的配位数依赖性催化活性
单原子催化剂(SACs)在用于环境修复的类芬顿反应中被广泛研究,其催化性能可以通过配位结构调制进一步提高,但相关报道很少。在此,合成了一系列具有不同配位数(表示为CoNx , x代表氮配位数)的原子分散钴催化剂,并探讨了它们的过氧单硫酸盐(PMS)转化性能。Co N x的催化比活性取决于单个原子 Co 位点的配位数,其中配位最低的 Co N 2催化剂在PMS活化中表现出最高的比活性,其次是配位不足的Co N 3和正常的Co N 4。实验和理论结果表明,降低配位数可以增加CoN x中单个Co原子的电子密度,这决定了CoN x催化剂的类芬顿性能。具体来说,整个 Co-吡啶 N C 基序作为 PMS 转换的活性中心,其中单个 Co 原子和吡啶 N 键合 C 原子以及与不饱和 Co-吡啶 N 2相邻的氮空位部分负责 PMS 的还原和氧化,分别产生自由基和单线态氧 ( 1 O 2 )。这些发现为环境应用中 SAC 的配位数调节提供了有用的途径。
更新日期:2022-07-07
中文翻译:
单原子钴催化剂对类芬顿反应的配位数依赖性催化活性
单原子催化剂(SACs)在用于环境修复的类芬顿反应中被广泛研究,其催化性能可以通过配位结构调制进一步提高,但相关报道很少。在此,合成了一系列具有不同配位数(表示为CoNx , x代表氮配位数)的原子分散钴催化剂,并探讨了它们的过氧单硫酸盐(PMS)转化性能。Co N x的催化比活性取决于单个原子 Co 位点的配位数,其中配位最低的 Co N 2催化剂在PMS活化中表现出最高的比活性,其次是配位不足的Co N 3和正常的Co N 4。实验和理论结果表明,降低配位数可以增加CoN x中单个Co原子的电子密度,这决定了CoN x催化剂的类芬顿性能。具体来说,整个 Co-吡啶 N C 基序作为 PMS 转换的活性中心,其中单个 Co 原子和吡啶 N 键合 C 原子以及与不饱和 Co-吡啶 N 2相邻的氮空位部分负责 PMS 的还原和氧化,分别产生自由基和单线态氧 ( 1 O 2 )。这些发现为环境应用中 SAC 的配位数调节提供了有用的途径。