当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermally controlled growth of photoactive FAPbI3 films for highly stable perovskite solar cells
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2022-07-07 , DOI: 10.1039/d2ee01196d Sandy Sánchez 1, 2 , Stefania Cacovich 3 , Guillaume Vidon 4 , Jean-François Guillemoles 3 , Felix Eickemeyer 1 , Shaik M. Zakeeruddin 1 , Jürgen E. K. Schawe 5, 6 , Jörg F. Löffler 5 , Cyril Cayron 7 , Pascal Schouwink 8 , Michael Graetzel 1
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2022-07-07 , DOI: 10.1039/d2ee01196d Sandy Sánchez 1, 2 , Stefania Cacovich 3 , Guillaume Vidon 4 , Jean-François Guillemoles 3 , Felix Eickemeyer 1 , Shaik M. Zakeeruddin 1 , Jürgen E. K. Schawe 5, 6 , Jörg F. Löffler 5 , Cyril Cayron 7 , Pascal Schouwink 8 , Michael Graetzel 1
Affiliation
We employ flash infrared annealing to investigate the phase transition of formamidinium lead triiodide (FAPbI3) thin films for their solar cell applications. Measuring the enthalpy changes of the FAPbI3 composition at different heating rates allows us to calculate an activation energy of 1.8 eV for the black perovskite phase transition. We explore different heating regimes for triggering the phase transformation and analyze the evolution of the microstructure with an empirical calculation of the average crystal growth velocity required to form a compact film on the micron and submicron scales. The films were then optoelectronically and structurally correlated by mapping the typical spherulite microstructure of grain domains, indicating a direct relationship between film homogeneity and higher crystal growth rate. Accordingly, we manufactured highly stable black FAPbI3-based perovskite solar cells using the optimal film crystallization processing parameters, with an annealing time of just 640 ms. We achieve a power conversion efficiency (PCE) of 18.5% using the champion device in the absence of any additives, incurring merely a 10% loss in the PCE during maximum power point tracking for 1500 h under full solar intensity exposure of the devices.
中文翻译:
用于高稳定性钙钛矿太阳能电池的光活性 FAPbI3 薄膜的热控制生长
我们采用闪光红外退火来研究用于太阳能电池应用的甲脒三碘化铅 (FAPbI 3 ) 薄膜的相变。测量 FAPbI 3的焓变不同加热速率下的成分使我们能够计算出黑色钙钛矿相变的活化能为 1.8 eV。我们探索了用于触发相变的不同加热方案,并通过经验计算在微米和亚微米尺度上形成致密薄膜所需的平均晶体生长速度来分析微观结构的演变。然后,通过映射晶粒域的典型球晶微观结构,薄膜在光电和结构上相关,表明薄膜均匀性和更高的晶体生长速率之间存在直接关系。因此,我们制造了高度稳定的黑色 FAPbI 3基钙钛矿太阳能电池使用最佳薄膜结晶工艺参数,退火时间仅为 640 毫秒。在没有任何添加剂的情况下,我们使用冠军器件实现了 18.5% 的功率转换效率 (PCE),在器件完全暴露在太阳强度下 1500 小时的最大功率点跟踪期间,PCE 仅损失 10%。
更新日期:2022-07-07
中文翻译:
用于高稳定性钙钛矿太阳能电池的光活性 FAPbI3 薄膜的热控制生长
我们采用闪光红外退火来研究用于太阳能电池应用的甲脒三碘化铅 (FAPbI 3 ) 薄膜的相变。测量 FAPbI 3的焓变不同加热速率下的成分使我们能够计算出黑色钙钛矿相变的活化能为 1.8 eV。我们探索了用于触发相变的不同加热方案,并通过经验计算在微米和亚微米尺度上形成致密薄膜所需的平均晶体生长速度来分析微观结构的演变。然后,通过映射晶粒域的典型球晶微观结构,薄膜在光电和结构上相关,表明薄膜均匀性和更高的晶体生长速率之间存在直接关系。因此,我们制造了高度稳定的黑色 FAPbI 3基钙钛矿太阳能电池使用最佳薄膜结晶工艺参数,退火时间仅为 640 毫秒。在没有任何添加剂的情况下,我们使用冠军器件实现了 18.5% 的功率转换效率 (PCE),在器件完全暴露在太阳强度下 1500 小时的最大功率点跟踪期间,PCE 仅损失 10%。