当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-Performance Rechargeable Aluminum-Ion Batteries Enabled by Composite FeF3 @ Expanded Graphite Cathode and Carbon Nanotube-Modified Separator
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-07-05 , DOI: 10.1002/aenm.202200959
Juyan Zhang 1, 2 , Lan Zhang 1 , Yunlong Zhao 3 , Jiashen Meng 4 , Bohua Wen 5 , Kashem M. Muttaqi 6 , Md. Rabiul Islam 6 , Qiong Cai 2 , Suojiang Zhang 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-07-05 , DOI: 10.1002/aenm.202200959
Juyan Zhang 1, 2 , Lan Zhang 1 , Yunlong Zhao 3 , Jiashen Meng 4 , Bohua Wen 5 , Kashem M. Muttaqi 6 , Md. Rabiul Islam 6 , Qiong Cai 2 , Suojiang Zhang 1
Affiliation
![]() |
Rechargeable aluminum ion batteries (AIBs) are one of the most promising battery technologies for future large-scale energy storage due to their high theoretical volumetric capacity, low-cost, and high safety. However, the low capacity of the intercalation-type cathode materials reduces the competitiveness of AIBs in practical applications. Herein, a conversion-type FeF3-expanded graphite (EG) composite is synthesized as a novel cathode material for AIBs with good conductivity and cycle stability. Combined with the introduction of a single-wall carbon nanotube modified separator, the shuttle effect of the intermediate product, FeCl2, is significantly restrained. Moreover, enhanced coulombic efficiency and reversible capacity are achieved. The AIB exhibits a satisfying reversible specific capacity of 266 mAh g−1 at 60 mA g−1 after 200 cycles, and good Coulombic efficiency of nearly 100% after 400 cycles at a current density of 100 mA g−1. Ex situ X-ray diffraction and X-ray photoelectron spectroscopy are applied to explore the energy storage mechanism of FeF3 in AIBs. The results reveal that the intercalation of Al3+ species and the reduction of Fe3+ species occurrs in the discharge process. These findings are meaningful for the fundamental understanding of the FeF3 cathode for AIBs and provide unprecedented insight into novel conversion type cathode materials for AIBs.
中文翻译:
由复合 FeF3 @ 膨胀石墨阴极和碳纳米管改性隔膜实现的高性能可充电铝离子电池
可充电铝离子电池(AIB)由于具有高理论容量、低成本和高安全性,是未来大规模储能最有前途的电池技术之一。然而,嵌入型正极材料的低容量降低了AIB在实际应用中的竞争力。在此,合成了一种转化型FeF 3膨胀石墨(EG)复合材料,作为一种具有良好导电性和循环稳定性的新型AIB正极材料。结合单壁碳纳米管改性隔膜的引入,中间产物FeCl 2的穿梭效应, 受到显着抑制。此外,还实现了提高的库伦效率和可逆容量。AIB在 60 mA g -1循环 200 次后表现出令人满意的 266 mAh g -1可逆比容量,以及在 100 mA g -1电流密度下循环 400 次后接近 100% 的良好库仑效率。采用非原位X射线衍射和X射线光电子能谱研究FeF 3在AIBs中的储能机制。结果表明,放电过程中发生了Al 3+物质的嵌入和Fe 3+物质的还原。这些发现对于基本理解 FeF 3具有重要意义用于 AIBs 的阴极,并为 AIBs 的新型转换型阴极材料提供前所未有的见解。
更新日期:2022-07-05
中文翻译:

由复合 FeF3 @ 膨胀石墨阴极和碳纳米管改性隔膜实现的高性能可充电铝离子电池
可充电铝离子电池(AIB)由于具有高理论容量、低成本和高安全性,是未来大规模储能最有前途的电池技术之一。然而,嵌入型正极材料的低容量降低了AIB在实际应用中的竞争力。在此,合成了一种转化型FeF 3膨胀石墨(EG)复合材料,作为一种具有良好导电性和循环稳定性的新型AIB正极材料。结合单壁碳纳米管改性隔膜的引入,中间产物FeCl 2的穿梭效应, 受到显着抑制。此外,还实现了提高的库伦效率和可逆容量。AIB在 60 mA g -1循环 200 次后表现出令人满意的 266 mAh g -1可逆比容量,以及在 100 mA g -1电流密度下循环 400 次后接近 100% 的良好库仑效率。采用非原位X射线衍射和X射线光电子能谱研究FeF 3在AIBs中的储能机制。结果表明,放电过程中发生了Al 3+物质的嵌入和Fe 3+物质的还原。这些发现对于基本理解 FeF 3具有重要意义用于 AIBs 的阴极,并为 AIBs 的新型转换型阴极材料提供前所未有的见解。