当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Asymmetric Co?N3P1 Trifunctional Catalyst with Tailored Electronic Structures Enabling Boosted Activities and Corrosion Resistance in an Uninterrupted Seawater Splitting System
Advanced Materials ( IF 27.4 ) Pub Date : 2022-07-04 , DOI: 10.1002/adma.202204021
Xingkun Wang 1 , Xinkun Zhou 2 , Cheng Li 3, 4 , Hanxu Yao 1, 2 , Canhui Zhang 1 , Jian Zhou 1 , Ren Xu 1 , Lei Chu 1 , Huanlei Wang 1 , Meng Gu 3 , Heqing Jiang 2 , Minghua Huang 1
Affiliation  

Employing seawater splitting systems to generate hydrogen can be economically advantageous but still remains challenging, particularly for designing efficient and high Cl-corrosion resistant trifunctional catalysts toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Herein, single CoNC catalysts with well-defined symmetric CoN4 sites are selected as atomic platforms for electronic structure tailoring. Density function theory reveals that P-doping into CoNC can lead to the formation of asymmetric CoN3P1 sites with symmetry-breaking electronic structures, enabling the affinity of strong oxygen-containing intermediates, moderate H adsorption, and weak Cl adsorption. Thus, ORR/OER/HER activities and stability are optimized simultaneously with high Cl-corrosion resistance. The asymmetric CoN3P1 structure based catalyst with boosted ORR/OER/HER performance endows seawater-based Zn–air batteries (S-ZABs) with superior long-term stability over 750 h and allows seawater splitting to operate continuously for 1000 h. A self-driven seawater splitting powered by S-ZABs gives ultrahigh H2 production rates of 497 μmol h−1. This work is the first to advance the scientific understanding of the competitive adsorption mechanism between Cl and reaction intermediates from the perspective of electronic structure, paving the way for synthesis of efficient trifunctional catalysts with high Cl-corrosion resistance.

中文翻译:

具有定制电子结构的不对称 Co?N3P1 三功能催化剂可在不间断的海水分解系统中提高活性和耐腐蚀性

使用海水分解系统产生氢气在经济上具有优势,但仍然具有挑战性,特别是对于设计用于氧还原反应 (ORR)、析氧反应 (OER) 和析氢反应的高效和高耐Cl -腐蚀的三功能催化剂。她)。在此,选择具有明确对称CoN 4 位点的单一CoNC催化剂作为电子结构调整原子平台。密度函数理论表明,P掺杂CoNC可以导致不对称CoN 3 P 1的形成具有对称破坏电子结构的位点,能够实现强含氧中间体的亲和力、适度的 H 吸附和弱的 Cl -吸附。因此,ORR/OER/HER 活性和稳定性与高 Cl -耐腐蚀性同时得到优化。具有增强的 ORR/OER/HER 性能的不对称Co N 3 P 1结构基催化剂赋予海水基锌空气电池(S-ZABs)超过 750 小时的出色长期稳定性,并允许海水分解连续运行 1000 H。由 S-ZAB 驱动的自驱动海水分解产生 497 μmol h -1的超高 H 2产率. 该工作首次从电子结构的角度推进了对Cl -与反应中间体之间竞争吸附机制的科学认识,为合成具有高Cl -耐腐蚀性的高效三功能催化剂铺平了道路。
更新日期:2022-07-04
down
wechat
bug