Nature Materials ( IF 37.2 ) Pub Date : 2022-06-30 , DOI: 10.1038/s41563-022-01279-1 Bing An 1 , Zhe Li 2, 3 , Zi Wang 1 , Xiangdi Zeng 1 , Xue Han 1 , Yongqiang Cheng 4 , Alena M Sheveleva 1, 5 , Zhongyue Zhang 6 , Floriana Tuna 1, 5 , Eric J L McInnes 1, 5 , Mark D Frogley 7 , Anibal J Ramirez-Cuesta 4 , Louise S Natrajan 1 , Cheng Wang 2 , Wenbin Lin 3 , Sihai Yang 1 , Martin Schröder 1
Natural gas, consisting mainly of methane (CH4), has a relatively low energy density at ambient conditions (~36 kJ l−1). Partial oxidation of CH4 to methanol (CH3OH) lifts the energy density to ~17 MJ l−1 and drives the production of numerous chemicals. In nature, this is achieved by methane monooxygenase with di-iron sites, which is extremely challenging to mimic in artificial systems due to the high dissociation energy of the C–H bond in CH4 (439 kJ mol−1) and facile over-oxidation of CH3OH to CO and CO2. Here we report the direct photo-oxidation of CH4 over mono-iron hydroxyl sites immobilized within a metal–organic framework, PMOF-RuFe(OH). Under ambient and flow conditions in the presence of H2O and O2, CH4 is converted to CH3OH with 100% selectivity and a time yield of 8.81 ± 0.34 mmol gcat−1 h−1 (versus 5.05 mmol gcat−1 h−1 for methane monooxygenase). By using operando spectroscopic and modelling techniques, we find that confined mono-iron hydroxyl sites bind CH4 by forming an [Fe–OH···CH4] intermediate, thus lowering the barrier for C–H bond activation. The confinement of mono-iron hydroxyl sites in a porous matrix demonstrates a strategy for C–H bond activation in CH4 to drive the direct photosynthesis of CH3OH.
中文翻译:
甲烷在单铁羟基位点上直接光氧化为甲醇
主要由甲烷(CH 4 )组成的天然气在环境条件下具有相对较低的能量密度(~36 kJ l -1)。CH 4部分氧化为甲醇 (CH 3 OH) 将能量密度提升至~17 MJ l -1并推动大量化学品的生产。在自然界中,这是通过具有二铁位点的甲烷单加氧酶实现的,由于 CH 4中 C-H 键的高解离能(439 kJ mol -1 ) 和易于过度使用,因此在人工系统中模拟该酶极具挑战性。 CH 3 OH氧化成CO和CO 2。在这里,我们报告了 CH 4的直接光氧化在固定在金属-有机框架内的单铁羟基位点上,PMOF-RuFe(OH)。在 H 2 O 和 O 2存在的环境和流动条件下,CH 4以 100% 的选择性转化为 CH 3 OH,时间产率为 8.81 ± 0.34 mmol g cat -1 h -1(相对于 5.05 mmol g cat -1 h -1用于甲烷单加氧酶)。通过使用操作光谱和建模技术,我们发现受限的单铁羟基位点通过形成[Fe-OH···CH 4结合CH 4] 中间体,从而降低了 C-H 键活化的障碍。多孔基质中单铁羟基位点的限制证明了 CH 4中 C-H 键活化以驱动 CH 3 OH的直接光合作用的策略。