当前位置:
X-MOL 学术
›
Small Methods
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Macrophage Cell Membrane-Cloaked Nanoplatforms for Biomedical Applications
Small Methods ( IF 10.7 ) Pub Date : 2022-06-29 , DOI: 10.1002/smtd.202200289 Joana Lopes 1 , Daniela Lopes 1 , Miguel Pereira-Silva 1, 2 , Diana Peixoto 1, 2 , Francisco Veiga 1, 2 , Michael R Hamblin 3, 4, 5 , João Conde 6, 7 , Claudia Corbo 8, 9 , Ehsan Nazarzadeh Zare 10 , Milad Ashrafizadeh 11 , Franklin R Tay 12 , Chengshui Chen 13 , Ryan F Donnelly 14 , Xiangdong Wang 15 , Pooyan Makvandi 16 , Ana Cláudia Paiva-Santos 1, 2
Small Methods ( IF 10.7 ) Pub Date : 2022-06-29 , DOI: 10.1002/smtd.202200289 Joana Lopes 1 , Daniela Lopes 1 , Miguel Pereira-Silva 1, 2 , Diana Peixoto 1, 2 , Francisco Veiga 1, 2 , Michael R Hamblin 3, 4, 5 , João Conde 6, 7 , Claudia Corbo 8, 9 , Ehsan Nazarzadeh Zare 10 , Milad Ashrafizadeh 11 , Franklin R Tay 12 , Chengshui Chen 13 , Ryan F Donnelly 14 , Xiangdong Wang 15 , Pooyan Makvandi 16 , Ana Cláudia Paiva-Santos 1, 2
Affiliation
Biomimetic approaches utilize natural cell membrane-derived nanovesicles to camouflage nanoparticles to circumvent some limitations of nanoscale materials. This emergent cell membrane-coating technology is inspired by naturally occurring intercellular interactions, to efficiently guide nanostructures to the desired locations, thereby increasing both therapeutic efficacy and safety. In addition, the intrinsic biocompatibility of cell membranes allows the crossing of biological barriers and avoids elimination by the immune system. This results in enhanced blood circulation time and lower toxicity in vivo. Macrophages are the major phagocytic cells of the innate immune system. They are equipped with a complex repertoire of surface receptors, enabling them to respond to biological signals, and to exhibit a natural tropism to inflammatory sites and tumorous tissues. Macrophage cell membrane-functionalized nanosystems are designed to combine the advantages of both macrophages and nanomaterials, improving the ability of those nanosystems to reach target sites. Recent studies have demonstrated the potential of these biomimetic nanosystems for targeted delivery of drugs and imaging agents to tumors, inflammatory, and infected sites. The present review covers the preparation and biomedical applications of macrophage cell membrane-coated nanosystems. Challenges and future perspectives in the development of these membrane-coated nanosystems are addressed.
中文翻译:
用于生物医学应用的巨噬细胞膜包裹纳米平台
仿生方法利用天然细胞膜衍生的纳米囊泡来伪装纳米粒子,以规避纳米材料的一些限制。这种新兴的细胞膜涂层技术受到自然发生的细胞间相互作用的启发,可有效地将纳米结构引导至所需位置,从而提高治疗效果和安全性。此外,细胞膜的内在生物相容性允许跨越生物屏障并避免被免疫系统消除。这导致血液循环时间增加和体内毒性降低。巨噬细胞是先天免疫系统的主要吞噬细胞。它们配备了复杂的表面受体库,使它们能够对生物信号做出反应,并表现出对炎症部位和肿瘤组织的天然趋向性。巨噬细胞膜功能化纳米系统旨在结合巨噬细胞和纳米材料的优点,提高这些纳米系统到达目标位点的能力。最近的研究表明,这些仿生纳米系统具有将药物和显像剂靶向递送至肿瘤、炎症和感染部位的潜力。本综述涵盖了巨噬细胞膜包被纳米系统的制备和生物医学应用。解决了这些膜涂层纳米系统开发中的挑战和未来前景。提高这些纳米系统到达目标位置的能力。最近的研究表明,这些仿生纳米系统具有将药物和显像剂靶向递送至肿瘤、炎症和感染部位的潜力。本综述涵盖了巨噬细胞膜包被纳米系统的制备和生物医学应用。解决了这些膜涂层纳米系统开发中的挑战和未来前景。提高这些纳米系统到达目标位置的能力。最近的研究表明,这些仿生纳米系统具有将药物和显像剂靶向递送至肿瘤、炎症和感染部位的潜力。本综述涵盖了巨噬细胞膜包被纳米系统的制备和生物医学应用。解决了这些膜涂层纳米系统开发中的挑战和未来前景。
更新日期:2022-06-29
中文翻译:
用于生物医学应用的巨噬细胞膜包裹纳米平台
仿生方法利用天然细胞膜衍生的纳米囊泡来伪装纳米粒子,以规避纳米材料的一些限制。这种新兴的细胞膜涂层技术受到自然发生的细胞间相互作用的启发,可有效地将纳米结构引导至所需位置,从而提高治疗效果和安全性。此外,细胞膜的内在生物相容性允许跨越生物屏障并避免被免疫系统消除。这导致血液循环时间增加和体内毒性降低。巨噬细胞是先天免疫系统的主要吞噬细胞。它们配备了复杂的表面受体库,使它们能够对生物信号做出反应,并表现出对炎症部位和肿瘤组织的天然趋向性。巨噬细胞膜功能化纳米系统旨在结合巨噬细胞和纳米材料的优点,提高这些纳米系统到达目标位点的能力。最近的研究表明,这些仿生纳米系统具有将药物和显像剂靶向递送至肿瘤、炎症和感染部位的潜力。本综述涵盖了巨噬细胞膜包被纳米系统的制备和生物医学应用。解决了这些膜涂层纳米系统开发中的挑战和未来前景。提高这些纳米系统到达目标位置的能力。最近的研究表明,这些仿生纳米系统具有将药物和显像剂靶向递送至肿瘤、炎症和感染部位的潜力。本综述涵盖了巨噬细胞膜包被纳米系统的制备和生物医学应用。解决了这些膜涂层纳米系统开发中的挑战和未来前景。提高这些纳米系统到达目标位置的能力。最近的研究表明,这些仿生纳米系统具有将药物和显像剂靶向递送至肿瘤、炎症和感染部位的潜力。本综述涵盖了巨噬细胞膜包被纳米系统的制备和生物医学应用。解决了这些膜涂层纳米系统开发中的挑战和未来前景。