当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theory-Driven Design of a Cationic Accelerator for High-Performance Electrolytic MnO2–Zn Batteries
Advanced Materials ( IF 27.4 ) Pub Date : 2022-06-29 , DOI: 10.1002/adma.202203249
Mingyan Chuai 1, 2 , Jinlong Yang 1 , Rui Tan 3 , Zaichun Liu 1, 2 , Yuan Yuan 1, 2 , Yan Xu 2 , Jifei Sun 2 , Mingming Wang 2 , Xinhua Zheng 2 , Na Chen 2 , Wei Chen 2
Affiliation  

Aqueous electrolytic MnO2–Zn batteries are considered as one of the most promising energy-storage devices for their cost effectiveness, high output voltage, and safety, but their electrochemical performance is limited by the sluggish kinetics of cathodic MnO2/Mn2+ and anodic Zn/Zn2+ reactions. To overcome this critical challenge, herein, a cationic accelerator (CA) strategy is proposed based on the prediction of first-principles calculations. Poly(vinylpyrrolidone) is utilized as a model to testify the rational design of the CA strategy. It manifests that the CA effectively facilitates rapid cations migration in electrolyte and adequate charge transfer at electrode–electrolyte interface, benefiting the deposition/dissolution processes of both Mn2+ and Zn2+ cations to simultaneously improve kinetics of cathodic MnO2/Mn2+ and anodic Zn/Zn2+ reactions. The resulting MnO2–Zn battery regulated by CA exhibits large reversible capacities of 455 mAh g–1 and 3.64 mAh cm–2 at 20 C, as well as a long lifespan of 2000 cycles with energy density retention of 90%, achieving one of the best overall performances in the electrolytic MnO2–Zn batteries. This comprehensive work integrating theoretical prediction with experimental studies provides opportunities to the development of high-performance energy-storage devices.

中文翻译:

高性能电解MnO2-Zn电池阳离子加速器的理论驱动设计

水系电解 MnO 2 -Zn 电池因其成本效益、高输出电压和安全性而被认为是最有前途的储能装置之一,但其电化学性能受到阴极 MnO 2 /Mn 2+和阳极锌/锌2+反应。为了克服这一关键挑战,本文提出了一种基于第一性原理计算预测的阳离子促进剂(CA)策略。以聚(乙烯基吡咯烷酮)为模型验证CA策略的合理设计。这表明CA有效地促进了电解质中阳离子的快速迁移和电极-电解质界面的充分电荷转移,有利于Mn 2+和Zn 2+阳离子的沉积/溶解过程,同时改善阴极MnO 2 /Mn 2+的动力学和阳极 Zn/Zn 2+反应。得到的由 CA 调节的 MnO 2 -Zn 电池表现出 455 mAh g -1的大可逆容量和 3.64 mAh cm -2 at 20 C,以及 2000 次循环的长寿命和 90% 的能量密度保持率,实现了电解 MnO 2 -Zn 电池中最好的整体性能之一。这项将理论预测与实验研究相结合的综合性工作为开发高性能储能装置提供了机会。
更新日期:2022-06-29
down
wechat
bug