当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
First-Principles Core Spectroscopy of LiCoO2 and CoO2
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2022-06-28 , DOI: 10.1021/acs.jpcc.2c01597 Daniel Duarte Ruiz 1 , Caterina Cocchi 1, 2
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2022-06-28 , DOI: 10.1021/acs.jpcc.2c01597 Daniel Duarte Ruiz 1 , Caterina Cocchi 1, 2
Affiliation
X-ray absorption spectroscopy is one of the most effective techniques to characterize the evolution of battery materials via in situ and operando measurements. Ab initio calculations complementing such experiments can crucially contribute to interpret these results and to gain insight into the microscopic properties of these complex systems. In this work, we adopt state-of-the-art methods based on all-electron density-functional theory and many-body perturbation theory to investigate core spectroscopy in LiCoO2 and in its binary counterpart CoO2. In doing so, we consider excitations from the Co K- and L2,3-edges as well as from the O K-edge. Our results, in good agreement with available experimental data, reveal that excitonic effects play a negligible role in the X-ray absorption spectra of these materials. Their spectral fingerprints are well reproduced already in the independent-particle approximation, and, on a qualitative level, they can be traced back from the corresponding contributions in the projected density of states. These findings suggest that monitoring the electronic structure of LiCoO2 during the delithiation process is sufficient to capture the evolution of their X-ray absorption signatures without the need for expensive many-body calculations. As such, our findings support the use of high-throughput calculations for the identification of X-ray spectral fingerprints in these systems.
中文翻译:
LiCoO2 和 CoO2 的第一原理核心光谱
X 射线吸收光谱是通过原位和操作测量来表征电池材料演变的最有效技术之一。补充此类实验的从头算计算可以至关重要地解释这些结果并深入了解这些复杂系统的微观特性。在这项工作中,我们采用基于全电子密度泛函理论和多体微扰理论的最新方法来研究 LiCoO 2及其二元对应物 CoO 2中的核心光谱。在这样做时,我们考虑来自 Co K- 和 L 2 , 3的激发-edges 以及来自 O K-edge。我们的结果与现有的实验数据非常吻合,表明激子效应在这些材料的 X 射线吸收光谱中的作用可以忽略不计。它们的光谱指纹已经在独立粒子近似中得到了很好的再现,并且在定性水平上,它们可以从投影状态密度的相应贡献中追溯。这些发现表明,在脱锂过程中监测 LiCoO 2的电子结构足以捕捉其 X 射线吸收特征的演变,而无需进行昂贵的多体计算。因此,我们的研究结果支持使用高通量计算来识别这些系统中的 X 射线光谱指纹。
更新日期:2022-06-28
中文翻译:
LiCoO2 和 CoO2 的第一原理核心光谱
X 射线吸收光谱是通过原位和操作测量来表征电池材料演变的最有效技术之一。补充此类实验的从头算计算可以至关重要地解释这些结果并深入了解这些复杂系统的微观特性。在这项工作中,我们采用基于全电子密度泛函理论和多体微扰理论的最新方法来研究 LiCoO 2及其二元对应物 CoO 2中的核心光谱。在这样做时,我们考虑来自 Co K- 和 L 2 , 3的激发-edges 以及来自 O K-edge。我们的结果与现有的实验数据非常吻合,表明激子效应在这些材料的 X 射线吸收光谱中的作用可以忽略不计。它们的光谱指纹已经在独立粒子近似中得到了很好的再现,并且在定性水平上,它们可以从投影状态密度的相应贡献中追溯。这些发现表明,在脱锂过程中监测 LiCoO 2的电子结构足以捕捉其 X 射线吸收特征的演变,而无需进行昂贵的多体计算。因此,我们的研究结果支持使用高通量计算来识别这些系统中的 X 射线光谱指纹。