当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photothermal Waveguide-Directed Microreactor for Enhanced Copper Ion Detection from Quantum Dots
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2022-06-27 , DOI: 10.1021/acsanm.2c01527 Yao Li 1 , Tianci Wang 1 , Zongbao Li 2 , Jianxin Yang 3 , Zhibin Yan 1 , Fangjing Luo 1 , Ruixue Zhou 1 , Tianyang Luan 1 , Lingling Shui 1 , Xiaobo Xing 1
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2022-06-27 , DOI: 10.1021/acsanm.2c01527 Yao Li 1 , Tianci Wang 1 , Zongbao Li 2 , Jianxin Yang 3 , Zhibin Yan 1 , Fangjing Luo 1 , Ruixue Zhou 1 , Tianyang Luan 1 , Lingling Shui 1 , Xiaobo Xing 1
Affiliation
Currently, the frontier of nanomaterials has been an extraordinary way for biological and chemical analysis. Using quantum dots (QDs) has served as a promising strategy for copper ion sensing. Various microreactors have been utilized to enhance the sensitivity and stability and shorten the detection time. By integrating a photothermal waveguide into a microfluidic platform, we have developed a photothermal microreactor for enhanced copper ion detection. Temperature gradient, intense vaper microbubbles, vortex, and microdroplets can be simultaneously generated due to the enhanced photothermal effect of graphene oxide and the evanescent field of microfiber. Due to the cooperation of gathering QDs by vortex fields, enlarging surface area on account of droplets, and accelerating molecular motion based on increasing temperature, this system can achieve highly enhanced detection of copper ions in a small sample volume of 2 μL within 5 min, where the detection limit is 3 orders of magnitudes lower than that of the original method. Such a photothermal microreactor is pollution-free and cost-effective with high efficiency and hypotoxicity, being highly potential as a powerful micro-sensing strategy for environmental monitoring as well as chemical analysis.
中文翻译:
用于增强量子点铜离子检测的光热波导定向微反应器
目前,纳米材料的前沿已经成为生物和化学分析的非凡途径。使用量子点 (QD) 已成为一种很有前途的铜离子传感策略。各种微反应器已被用于提高灵敏度和稳定性并缩短检测时间。通过将光热波导集成到微流控平台中,我们开发了一种用于增强铜离子检测的光热微反应器。由于氧化石墨烯的增强光热效应和微纤维的倏逝场,可以同时产生温度梯度、强烈的微泡、涡流和微滴。由于涡旋场聚集量子点、液滴扩大表面积和温度升高加速分子运动的协同作用,该系统可在5 min内实现对2 μL小样品量中铜离子的高度增强检测,检测限比原方法低3个数量级。这种光热微反应器无污染、成本效益高、效率高、毒性低,作为环境监测和化学分析的强大微传感策略极具潜力。
更新日期:2022-06-27
中文翻译:
用于增强量子点铜离子检测的光热波导定向微反应器
目前,纳米材料的前沿已经成为生物和化学分析的非凡途径。使用量子点 (QD) 已成为一种很有前途的铜离子传感策略。各种微反应器已被用于提高灵敏度和稳定性并缩短检测时间。通过将光热波导集成到微流控平台中,我们开发了一种用于增强铜离子检测的光热微反应器。由于氧化石墨烯的增强光热效应和微纤维的倏逝场,可以同时产生温度梯度、强烈的微泡、涡流和微滴。由于涡旋场聚集量子点、液滴扩大表面积和温度升高加速分子运动的协同作用,该系统可在5 min内实现对2 μL小样品量中铜离子的高度增强检测,检测限比原方法低3个数量级。这种光热微反应器无污染、成本效益高、效率高、毒性低,作为环境监测和化学分析的强大微传感策略极具潜力。