准确的颅骨剥离有助于进行后续神经图像分析。对于计算机辅助方法,结构磁共振成像 (MRI) 中脑颅骨的存在会影响脑组织识别,这可能导致严重的误判,特别是对于脑肿瘤患者。尽管文献中已有几篇关于颅骨剥离的研究,但其中大多数要么专注于健康的大脑 MRI,要么仅适用于单一的图像模式。这些方法可能不是多参数 MRI 扫描的最佳选择。在本文中,我们提出了一种集成神经网络 (EnNet),这是一种基于 3D 卷积神经网络 (3DCNN) 的方法,用于多参数 MRI 扫描 (mpMRI) 上的大脑提取。我们通过使用所提出的方法在总共 15 种图像模态组合上全面研究了颅骨剥离性能。比较表明,利用所有方式在颅骨剥离方面提供最佳性能。我们在匹兹堡大学医学中心 (UPMC) 和癌症影像档案馆 (TCIA) 收集了 815 例伴/不伴多形性胶质母细胞瘤 (GBM) 病例的回顾性数据集。颅骨剥离的基本事实由至少一名合格的放射科医生验证。定量评估分别给出了第 95 个百分位数的平均骰子分数系数和 Hausdorff 距离。我们还将性能与最先进的方法/工具进行了比较。所提出的方法提供了最佳性能。
这项工作的贡献有五个方面:首先,所提出的方法是使用 3D 深度学习方法进行全自动端到端的颅骨剥离。其次,它适用于 mpMRI,也很容易针对任何 MRI 模式组合进行定制。第三,所提出的方法不仅适用于健康的大脑 mpMRI,也适用于 GBM 的术前/术后脑部 mpMRI。第四,所提出的方法处理多中心数据。最后,据我们所知,我们是第一个使用不同方式定量比较颅骨剥离性能的小组。所有代码和预训练模型均可在以下网址获得:https://github.com/plmoer/skull_stripping_code_SR。
"点击查看英文标题和摘要"
A general skull stripping of multiparametric brain MRIs using 3D convolutional neural network
Accurate skull stripping facilitates following neuro-image analysis. For computer-aided methods, the presence of brain skull in structural magnetic resonance imaging (MRI) impacts brain tissue identification, which could result in serious misjudgments, specifically for patients with brain tumors. Though there are several existing works on skull stripping in literature, most of them either focus on healthy brain MRIs or only apply for a single image modality. These methods may be not optimal for multiparametric MRI scans. In the paper, we propose an ensemble neural network (EnNet), a 3D convolutional neural network (3DCNN) based method, for brain extraction on multiparametric MRI scans (mpMRIs). We comprehensively investigate the skull stripping performance by using the proposed method on a total of 15 image modality combinations. The comparison shows that utilizing all modalities provides the best performance on skull stripping. We have collected a retrospective dataset of 815 cases with/without glioblastoma multiforme (GBM) at the University of Pittsburgh Medical Center (UPMC) and The Cancer Imaging Archive (TCIA). The ground truths of the skull stripping are verified by at least one qualified radiologist. The quantitative evaluation gives an average dice score coefficient and Hausdorff distance at the 95th percentile, respectively. We also compare the performance to the state-of-the-art methods/tools. The proposed method offers the best performance.
The contributions of the work have five folds: first, the proposed method is a fully automatic end-to-end for skull stripping using a 3D deep learning method. Second, it is applicable for mpMRIs and is also easy to customize for any MRI modality combination. Third, the proposed method not only works for healthy brain mpMRIs but also pre-/post-operative brain mpMRIs with GBM. Fourth, the proposed method handles multicenter data. Finally, to the best of our knowledge, we are the first group to quantitatively compare the skull stripping performance using different modalities. All code and pre-trained model are available at: https://github.com/plmoer/skull_stripping_code_SR.