当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mitigating the Surface Reconstruction of Ni-Rich Cathode via P2-Type Mn-Rich Oxide Coating for Durable Lithium Ion Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-06-24 , DOI: 10.1021/acsami.2c06264 Xiangsi Liu 1 , Jialiang Hao 1 , Maojie Zhang 1 , Bizhu Zheng 1 , Danhui Zhao 1 , Yong Cheng 1, 2 , Zhanning He 1 , Mintao Su 1 , Chenpeng Xie 1 , Mingzeng Luo 1 , Peizhao Shan 1 , Mingming Tao 1 , Ziteng Liang 1 , Yuxuan Xiang 1 , Yong Yang 1, 3
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-06-24 , DOI: 10.1021/acsami.2c06264 Xiangsi Liu 1 , Jialiang Hao 1 , Maojie Zhang 1 , Bizhu Zheng 1 , Danhui Zhao 1 , Yong Cheng 1, 2 , Zhanning He 1 , Mintao Su 1 , Chenpeng Xie 1 , Mingzeng Luo 1 , Peizhao Shan 1 , Mingming Tao 1 , Ziteng Liang 1 , Yuxuan Xiang 1 , Yong Yang 1, 3
Affiliation
Ni-rich materials have received widespread attention as one of the mainstream cathodes in high-energy-density lithium-ion batteries for electric vehicles. However, Ni-rich cathodes suffer from severe surface reconstruction in a high delithiation state, constraining their rate capabilities and life span. Herein, a novel P2-type NaxNi0.33Mn0.67O2 (NNMO) is rationally selected as the surficial modification layer for LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode, which undergoes a spontaneous Na+–Li+ exchange reaction to form an O2-type LixNi0.33Mn0.67O2 (LNMO) layer revealed by combining X-ray diffraction and solid-state nuclear magnetic resonance techniques. Owing to the specific oxygen stacking sequence, O2-type LNMO significantly prevents the initial layered structure of NCM811 from transforming to the spinel or rock-salt phases during cycling, thus effectively maintaining the integral surficial structure and the Li+ diffusion channels of NCM811. Eventually, the NNMO@NCM811 electrode yields enhanced thermal stability, outstanding rate performance, and long cycling stability with 80% capacity retention after 294 cycles at 200 mA g–1, and its life span is further extended to 531 cycles while enhancing the mechanical stability of the bulk material.
中文翻译:
通过用于耐用锂离子电池的 P2 型富锰氧化物涂层减轻富镍阴极的表面重建
富镍材料作为电动汽车高能量密度锂离子电池的主流正极之一受到广泛关注。然而,富镍正极在高脱锂状态下会遭受严重的表面重构,限制了它们的倍率能力和寿命。在此,合理地选择了一种新型 P2 型 Na x Ni 0.33 Mn 0.67 O 2 (NNMO) 作为 LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) 正极的表面改性层,该正极经历了自发的 Na + -Li +交换反应形成 O2 型 Li x Ni 0.33通过结合 X 射线衍射和固态核磁共振技术揭示的Mn 0.67 O 2 (LNMO) 层。由于特定的氧堆积顺序,O2型LNMO显着阻止了NCM811的初始层状结构在循环过程中向尖晶石或岩盐相转变,从而有效地保持了NCM811的整体表面结构和Li +扩散通道。最终,NNMO@NCM811 电极获得了增强的热稳定性、出色的倍率性能和长循环稳定性,在 200 mA g -1下循环 294 次后容量保持率为 80% ,其寿命进一步延长至 531 次循环,同时提高了机械稳定性的散装材料。
更新日期:2022-06-24
中文翻译:
通过用于耐用锂离子电池的 P2 型富锰氧化物涂层减轻富镍阴极的表面重建
富镍材料作为电动汽车高能量密度锂离子电池的主流正极之一受到广泛关注。然而,富镍正极在高脱锂状态下会遭受严重的表面重构,限制了它们的倍率能力和寿命。在此,合理地选择了一种新型 P2 型 Na x Ni 0.33 Mn 0.67 O 2 (NNMO) 作为 LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) 正极的表面改性层,该正极经历了自发的 Na + -Li +交换反应形成 O2 型 Li x Ni 0.33通过结合 X 射线衍射和固态核磁共振技术揭示的Mn 0.67 O 2 (LNMO) 层。由于特定的氧堆积顺序,O2型LNMO显着阻止了NCM811的初始层状结构在循环过程中向尖晶石或岩盐相转变,从而有效地保持了NCM811的整体表面结构和Li +扩散通道。最终,NNMO@NCM811 电极获得了增强的热稳定性、出色的倍率性能和长循环稳定性,在 200 mA g -1下循环 294 次后容量保持率为 80% ,其寿命进一步延长至 531 次循环,同时提高了机械稳定性的散装材料。